RELATIVE KOLMOGOROV COMPLEXITY AND GEOMETRY

被引:1
作者
Binns, Stephen [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
D O I
10.2178/jsl/1318338846
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the notions of effective dimension and Kolmogorov complexity to describe a geometry on the set of infinite binary sequences. Geometric concepts that we define and use include angle, projections and scalar multiplication. A question related to compressibility is addressed using these ideas.
引用
收藏
页码:1211 / 1239
页数:29
相关论文
共 10 条
[1]   Effective strong dimension in algorithmic information and computational complexity [J].
Athreya, Krishna B. ;
Hitchcock, John M. ;
Lutz, Jack H. ;
Mayordomo, Elvira .
SIAM JOURNAL ON COMPUTING, 2007, 37 (03) :671-705
[2]   Turing degrees of reals of positive effective packing dimension [J].
Downey, Rod ;
Greenberg, Noam .
INFORMATION PROCESSING LETTERS, 2008, 108 (05) :298-303
[3]  
Downey RG, 2010, THEOR APPL COMPUT, P401, DOI 10.1007/978-0-387-68441-3
[4]  
LuTz JACK H., GALES CONSTRUCTIVE D, P902
[5]   Effective fractal dimensions [J].
Lutz, JH .
MATHEMATICAL LOGIC QUARTERLY, 2005, 51 (01) :62-72
[6]   The dimensions of individual strings and sequences [J].
Lutz, JH .
INFORMATION AND COMPUTATION, 2003, 187 (01) :49-79
[8]  
Nies A., 2009, Computability and Randomness
[9]  
REIMANN JAN, 2004, THESIS RUPRECHTKARLS
[10]  
Welzl E., 2000, LECT NOTES COMPUTER, V1853