First-harmonic intrinsic nonlinearity of model polymer solutions in medium amplitude oscillatory shear (MAOS)

被引:4
|
作者
Song, Hyeong Yong [1 ]
Hyun, Kyu [1 ]
机构
[1] Pusan Natl Univ, Sch Chem & Biomol Engn, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
medium amplitude oscillatory shear; MAOS; intrinsic nonlinearity; Fourier-transform (FT) rheology; nonlinear rheology; RHEOLOGICAL PROPERTIES; SILICA NANOPARTICLES; PP/PS BLENDS; BEHAVIOR; LAOS; VISCOELASTICITY; FLOW;
D O I
10.1007/s13367-019-0001-x
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
First-harmonic MAOS moduli were demonstrated experimentally using monodisperse linear polystyrene (PS) solutions at different concentrations. Two first-harmonic intrinsic nonlinearities are asymptotic deviations from two linear viscoelastic moduli and obtained in medium amplitude oscillatory shear (MAOS) regime. Master curves of first-harmonic MAOS moduli for PS solutions provided novel information which has never been reported before. The interrelationship between first-harmonic and third-harmonic MAOS moduli was evaluated at low and high De. At the low-De limit, all solutions followed the universal interrelation predicted by fourth-order fluid expansion. At the high-De limit, where no universal interrelation exists, the average first-harmonic to third-harmonic elastic MAOS moduli ratio was -22.26, and for viscous counterparts, the magnitude and sign of this ratio changed on increasing frequency. Unentangled and entangled solutions were distinguished using normalized viscous moduli at De > 1. Viscous MAOS moduli normalized by SAOS complex modulus displayed a plateau for unentangled solutions and a decreasing behavior for entangled solutions. First-harmonic MAOS moduli of entangled solutions agreed well with multimode molecular stress function (MSF) predictions under the all relaxation mode assumption, which contrasted with third-harmonic MAOS predictions using the terminal relaxation mode assumption. It is expected that the first-harmonic MAOS results in this paper will be good reference information for future MAOS studies and computer simulations.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 17 条