Bourgain's slicing problem and KLS isoperimetry up to polylog

被引:26
|
作者
Klartag, Bo'az [1 ]
Lehec, Joseph [2 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[2] Univ Paris 09, UMR CNRS 7534, CEREMADE, F-75016 Paris, France
基金
以色列科学基金会;
关键词
CENTRAL-LIMIT-THEOREM; CONVEX-BODIES; PROPERTY; SHELL; SETS;
D O I
10.1007/s00039-022-00612-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Bourgain's hyperplane conjecture and the Kannan-Lovasz-Simonovits (KLS) isoperimetric conjecture hold true up to a factor that is polylogarithmic in the dimension.
引用
收藏
页码:1134 / 1159
页数:26
相关论文
共 3 条
  • [1] Eldan's stochastic localization and the KLS conjecture: Isoperimetry, concentration and mixing
    Lee, Yin Tat
    Vempala, Santosh S.
    ANNALS OF MATHEMATICS, 2024, 199 (03) : 1043 - 1092
  • [2] Towards Hadwiger's Conjecture via Bourgain Slicing
    Campos, Marcelo
    van Hintum, Peter
    Morris, Robert
    Tiba, Marius
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (10) : 8282 - 8295
  • [3] POLYNOMIAL BOUNDS IN KOLDOBSKY'S DISCRETE SLICING PROBLEM
    Freyer, Ansgar
    Henk, Martin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (07) : 3063 - 3074