Formation and propagation of cracks in RRP Nb3Sn wires studied by deep learning applied to x-ray tomography

被引:8
作者
Bagni, Tommaso [1 ]
Mauro, Diego [1 ]
Majkut, Marta [2 ]
Rack, Alexander [2 ]
Senatore, Carmine [1 ]
机构
[1] Univ Geneva, Dept Quantum Matter Phys, Geneva, Switzerland
[2] ESRF European Synchrotron, Grenoble, France
关键词
x-ray tomography; deep learning; neural network; cracks formation; mechanical limits; artificial intelligence; low temperature superconductors;
D O I
10.1088/1361-6668/ac86ac
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper reports a novel non-destructive and non-invasive method to investigate crack formation and propagation in high-performance Nb3Sn wires by combining x-ray tomography and deep learning networks. The next generation of high field magnet applications relies on the development of new Nb3Sn wires capable to withstand the large stresses generated by Lorentz forces during magnets operation. These stresses can cause a permanent reduction of the transport properties generated by residual deformation of the Nb3Sn crystal lattice as well as the formation of cracks in the brittle Nb3Sn filaments. Studies for the development of the high luminosity LHC (HL-LHC) upgrade showed that nominal transverse compressive stresses above 150 MPa may be sufficient to generate cracks in the wires. In the case of fusion magnets, wires experience periodic bending due to the electro-magnetic cycles of the reactor which over time may induce wire deformation and filament cracks. Therefore, it has become essential to develop a quantitative method for the characterization of crack formation and propagation under compressive loads. The x-ray tomographic data of a series of restacked-rod-process (RRP) Nb3Sn wires was acquired at the micro-tomography beamline ID19 of the European Synchrotron Radiation Facility (ESRF), after intentionally inducing a broad spectrum of cracks in the Nb3Sn sub-elements. The samples were submitted to transvers compressive stresses, with and without epoxy impregnation, at different pressures, up to 238 MPa. The resulting tomographic images were analysed by means of deep learning semantic segmentation networks, using U-net, a convolutional neural network (CNN), to identify and segment cracks inside the wires. The trained CNN was able to analyse large volumes of tomographic data, thus enabling a systematic approach for investigating the mechanical damages in Nb3Sn wires. We will show the complete three-dimensional reconstruction of various cracks and discuss their impact on the electro-mechanical performance of the analysed wires.
引用
收藏
页数:10
相关论文
共 41 条
[1]   FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3 [J].
Abada, A. ;
Abbrescia, M. ;
AbdusSalam, S. S. ;
Abdyukhanov, I. ;
Abelleira Fernandez, J. ;
Abramov, A. ;
Aburaia, M. ;
Acar, A. O. ;
Adzic, P. R. ;
Agrawal, P. ;
Aguilar-Saavedra, J. A. ;
Aguilera-Verdugo, J. J. ;
Aiba, M. ;
Aichinger, I. ;
Aielli, G. ;
Akay, A. ;
Akhundov, A. ;
Aksakal, H. ;
Albacete, J. L. ;
Albergo, S. ;
Alekou, A. ;
Aleksa, M. ;
Aleksan, R. ;
Alemany Fernandez, R. M. ;
Alexahin, Y. ;
Alia, R. G. ;
Alioli, S. ;
Alipour Tehrani, N. ;
Allanach, B. C. ;
Allport, P. P. ;
Altinli, M. ;
Altmannshofer, W. ;
Ambrosio, G. ;
Amorim, D. ;
Amstutz, O. ;
Anderlini, L. ;
Andreazza, A. ;
Andreini, M. ;
Andriatis, A. ;
Andris, C. ;
Andronic, A. ;
Angelucci, M. ;
Antinori, F. ;
Antipov, S. A. ;
Antonelli, M. ;
Antonello, M. ;
Antonioli, P. ;
Antusch, S. ;
Anulli, F. ;
Apolinario, L. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (04) :755-1107
[2]  
Aghdam H.H., 2017, Guide to convolutional neural networks, V10, P51, DOI 10.1007/978-3-319-57550-6
[3]  
Apollinari G., 2015, CERN YELLOW REPORTS
[4]   Effect of the Sub-Elements Layout on the Electro-Mechanical Properties of High Jc Nb3Sn Wires Under Transverse Load: Numerical Simulations [J].
Baffari, D. ;
Bordini, B. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (06)
[5]  
Bagni T., 2022, IOP SciNotes, V3, DOI [10.1088/2633-1357/ac54bf, 10.1088/2633-1357/ac54bf]
[6]   Machine learning applied to X-ray tomography as a new tool to analyze the voids in RRP Nb3Sn wires [J].
Bagni, T. ;
Bovone, G. ;
Rack, A. ;
Mauro, D. ;
Barth, C. ;
Matera, D. ;
Buta, F. ;
Senatore, C. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[7]  
Bagni T., 2022, UNPUB
[8]   Conduction cooled magnet design for 1.5T, 3.0T and 7.0T MRI systems [J].
Baig, Tanvir ;
Yao, Zhen ;
Doll, David ;
Tomsic, Michael ;
Martens, Michael .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2014, 27 (12)
[9]   Quantitative correlation between the void morphology of niobiumtin wires and their irreversible critical current degradation upon mechanical loading [J].
Barth, C. ;
Seeber, B. ;
Rack, A. ;
Calzolaio, C. ;
Zhai, Y. ;
Matera, D. ;
Senatore, C. .
SCIENTIFIC REPORTS, 2018, 8
[10]  
Barzi E, 2019, PART ACCEL DETECT, P23, DOI 10.1007/978-3-030-16118-7_2