Light-Excited Antibiotics for Potentiating Bacterial Killing via Reactive Oxygen Species Generation

被引:49
作者
Jiang, Qi [1 ]
Fangjie, E. [1 ]
Tian, Jingxiao [1 ]
Yang, Jiangtao [1 ]
Zhang, Jiangyan [1 ]
Cheng, Yongqiang [1 ]
机构
[1] Hebei Univ, Key Lab Med Chem & Mol Diag, Minist Educ, Key Lab Analyt Sci & Technol Hebei Prov,Coll Chem, Baoding 071002, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
light irradiation; antibiotics; photodynamic antibacterium; reactive oxygen species; photosensitizer; ANTIMICROBIAL PHOTODYNAMIC INACTIVATION; STAPHYLOCOCCUS-AUREUS; RESISTANCE; POLYMYXIN; COMBINATIONS; MECHANISMS;
D O I
10.1021/acsami.0c02647
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The irrational or excessive use of antibiotics causes the emergence of bacterial resistance, making antibiotics less effective or ineffective. As the number of resistant antibiotics increases, it is crucial to develop new strategies and innovative approaches to potentiate the efficacy of existing antibiotics. In this paper, we report that some existing antibiotics can produce reactive oxygen species (ROS) directly under light irradiation. Thus, a novel antibacterial photodynamic therapy (PDT) strategy is proposed by using existing antibiotics for which the activities are potentiated via light-activation. This antibiotic-based PDT strategy can achieve efficient bacteria killing with a low dosage of antibiotics, indicating that bacterial killing can be enhanced by the light-irradiated antibiotics. Moreover, the specific types of ROS produced by different antibiotics under light irradiation were studied for better elucidation of the antibacterial mechanism. The findings can extend the application of existing antibiotics and provide a promising strategy for treatment of bacterial infections and even cancers.
引用
收藏
页码:16150 / 16158
页数:9
相关论文
共 42 条
[1]   Multidrug evolutionary strategies to reverse antibiotic resistance [J].
Baym, Michael ;
Stone, Laura K. ;
Kishony, Roy .
SCIENCE, 2016, 351 (6268)
[2]   Molecular mechanisms of antibiotic resistance [J].
Blair, Jessica M. A. ;
Webber, Mark A. ;
Baylay, Alison J. ;
Ogbolu, David O. ;
Piddock, Laura J. V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) :42-51
[3]   Antibacterial drug discovery in the resistance era [J].
Brown, Eric D. ;
Wright, Gerard D. .
NATURE, 2016, 529 (7586) :336-343
[4]   Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production [J].
Brynildsen, Mark P. ;
Winkler, Jonathan A. ;
Spina, Catherine S. ;
MacDonald, I. Cody ;
Collins, James J. .
NATURE BIOTECHNOLOGY, 2013, 31 (02) :160-165
[5]   Waves of resistance: Staphylococcus aureus in the antibiotic era [J].
Chambers, Henry F. ;
DeLeo, Frank R. .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (09) :629-641
[6]   Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens [J].
Chang, Hsiao-Han ;
Cohen, Ted ;
Grad, Yonatan H. ;
Hanage, William P. ;
O'Brien, Thomas F. ;
Lipsitch, Marc .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2015, 79 (01) :101-116
[7]   Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation [J].
Courtney, Colleen M. ;
Goodman, Samuel M. ;
Nagy, Toni A. ;
Levy, Max ;
Bhusal, Pallavi ;
Madinger, Nancy E. ;
Detweiler, Corrella S. ;
Nagpal, Prashant ;
Chatterjee, Anushree .
SCIENCE ADVANCES, 2017, 3 (10)
[8]  
Courtney CM, 2016, NAT MATER, V15, P529, DOI [10.1038/NMAT4542, 10.1038/nmat4542]
[9]   Next-generation approaches to understand and combat the antibiotic resistome [J].
Crofts, Terence S. ;
Gasparrini, Andrew J. ;
Dantas, Gautam .
NATURE REVIEWS MICROBIOLOGY, 2017, 15 (07) :422-434
[10]  
Ejim L, 2011, NAT CHEM BIOL, V7, P348, DOI [10.1038/nchembio.559, 10.1038/NCHEMBIO.559]