On second-order fuzzy discrete population model

被引:5
|
作者
Zhang, Qianhong [1 ,2 ]
Ouyang, Miao [3 ,4 ]
Zhang, Zhongni [1 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Suqian Univ, Sch Arts & Sci, Suqian 223800, Jiangsu, Peoples R China
[3] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Sichuan, Peoples R China
[4] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Fujian, Peoples R China
来源
OPEN MATHEMATICS | 2022年 / 20卷 / 01期
基金
中国国家自然科学基金;
关键词
fuzzy discrete population model; g-division; boundedness; global asymptotic behavior; DIFFERENCE-EQUATIONS; DYNAMICS;
D O I
10.1515/math-2022-0018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with dynamical behavior of a second-order fuzzy discrete population model: x(n) = Ax(n-1)/1 + x(n-1) + Bx(n-2), n = 1, 2, ..., where A, B are positive fuzzy numbers. x(n) is a positive fuzzy number and represents the population size at the observation instant n. According to a generalization of division (g-division) of fuzzy number, we study the dynamical behaviors including boundedness, global asymptotical stability, and persistence of positive fuzzy solution. Finally, two examples are given to demonstrate the effectiveness of the results obtained.
引用
收藏
页码:125 / 139
页数:15
相关论文
共 50 条
  • [1] A COMPACTNESS RESULT FOR A SECOND-ORDER VARIATIONAL DISCRETE MODEL
    Braides, Andrea
    Defranceschi, Anneliese
    Vitali, Enrico
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 389 - 410
  • [2] ASYMPTOTIC FEATURE OF DISCRETE SECOND-ORDER FUZZY DIFFERENCE EQUATION WITH QUADRATIC TERM∗
    Zhang, Qianhong
    Jin, Fei
    Zhang, Zhongni
    Pan, Bairong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 640 - 656
  • [3] Hyperchaos in a second-order discrete memristor-based map model
    Bao, Bo-Cheng
    Li, Houzhen
    Wu, Huagan
    Zhang, Xi
    Chen, Mo
    ELECTRONICS LETTERS, 2020, 56 (15) : 769 - 770
  • [4] A second-order weak approximation of Heston model by discrete random variables
    Antanas Lenkšas
    Vigirdas Mackevičius
    Lithuanian Mathematical Journal, 2015, 55 : 555 - 572
  • [5] A second-order weak approximation of Heston model by discrete random variables
    Lenksas, Antanas
    Mackevicius, Vigirdas
    LITHUANIAN MATHEMATICAL JOURNAL, 2015, 55 (04) : 555 - 572
  • [6] A second-order fuzzy time series model for stock price analysis
    Liu, Zhi
    Zhang, Tie
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (14) : 2514 - 2526
  • [7] A Second-Order Fuzzy Time Series Model for Stock Price Analysis
    Liu Z.
    Zhang T.
    Dong Y.
    Xu S.-S.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2019, 40 (02): : 300 - 304
  • [8] Optimization of Second-Order Discrete Approximation Inclusions
    Mahmudov, Elimhan N.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (05) : 624 - 643
  • [9] Fuzzy Finite Automata and Fuzzy Monadic Second-Order Logic
    Li, Yongming
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 117 - 121
  • [10] A second-order numerical method for a cell population model with asymmetric division
    Angulo, O.
    Lopez-Marcos, J. C.
    Lopez-Marcos, M. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 309 : 522 - 531