On second-order fuzzy discrete population model

被引:5
作者
Zhang, Qianhong [1 ,2 ]
Ouyang, Miao [3 ,4 ]
Zhang, Zhongni [1 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Suqian Univ, Sch Arts & Sci, Suqian 223800, Jiangsu, Peoples R China
[3] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Sichuan, Peoples R China
[4] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
fuzzy discrete population model; g-division; boundedness; global asymptotic behavior; DIFFERENCE-EQUATIONS; DYNAMICS;
D O I
10.1515/math-2022-0018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with dynamical behavior of a second-order fuzzy discrete population model: x(n) = Ax(n-1)/1 + x(n-1) + Bx(n-2), n = 1, 2, ..., where A, B are positive fuzzy numbers. x(n) is a positive fuzzy number and represents the population size at the observation instant n. According to a generalization of division (g-division) of fuzzy number, we study the dynamical behaviors including boundedness, global asymptotical stability, and persistence of positive fuzzy solution. Finally, two examples are given to demonstrate the effectiveness of the results obtained.
引用
收藏
页码:125 / 139
页数:15
相关论文
共 31 条
[1]  
Alijani Z., 2017, J. Comput. Complex. Appl, V3, P44
[2]  
[Anonymous], 1957, Fisheries investigation series, 2Ministry of Agriculture, Fisheries and Food
[3]   OPTIMAL HARVESTING POLICY FOR THE BEVERTON HOLT MODEL [J].
Bohner, Martin ;
Streipert, Sabrina .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2016, 13 (04) :673-695
[4]   On the fuzzy difference equations of finance [J].
Chrysafis, Konstantinos A. ;
Papadopoulos, Basil K. ;
Papaschinopoulos, G. .
FUZZY SETS AND SYSTEMS, 2008, 159 (24) :3259-3270
[5]   The generalized Beverton-Holt equation and the control of populations [J].
De la Sen, M. .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (11) :2312-2328
[6]   Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases [J].
De la Sen, M. ;
Alonso-Quesada, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) :2616-2633
[7]   Analysis by fuzzy difference equations of a model of CO2 level in the blood [J].
Deeba, EY ;
de Korvin, A .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :33-40
[8]  
Deeba EY., 1996, Journal of Difference Equations and Applications, V2, P365, DOI [10.1080/10236199608808071, DOI 10.1080/10236199608808071]
[9]  
Din Q., 2015, J Discrete Math, V2015, DOI [10.1155/2015/524931, DOI 10.1155/2015/524931]
[10]  
Dubois D., 1998, POSSIBILITY THEORY A, DOI [10.1137/1034034, DOI 10.1137/1034034]