Singular continuous spectrum for a class of substitution Hamiltonians

被引:33
作者
Damanik, D [1 ]
机构
[1] Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
关键词
Schrodinger operators; substitution potentials; singular continuous spectrum;
D O I
10.1023/A:1007510721504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider discrete one-dimensional Schrodinger operators with potentials generated by primitive substitutions. A purely singular continuous spectrum with probability one is established provided that the potentials have a local four-block structure. Mathematics Subject Classifications (1991): 47B80, 81Q10.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 26 条
[1]  
Bellissard J., 1992, Reviews in Mathematical Physics, V4, P1, DOI 10.1142/S0129055X92000029
[2]   SPECTRAL PROPERTIES OF ONE DIMENSIONAL QUASI-CRYSTALS [J].
BELLISSARD, J ;
IOCHUM, B ;
SCOPPOLA, E ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (03) :527-543
[3]   SPECTRAL PROPERTIES OF A TIGHT-BINDING HAMILTONIAN WITH PERIOD DOUBLING POTENTIAL [J].
BELLISSARD, J ;
BOVIER, A ;
GHEZ, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (02) :379-399
[4]   SPECTRAL PROPERTIES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH POTENTIALS GENERATED BY SUBSTITUTIONS (VOL 158, PG 45, 1993) [J].
BOVIER, A ;
GHEZ, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (02) :431-432
[5]   SPECTRAL PROPERTIES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH POTENTIALS GENERATED BY SUBSTITUTIONS [J].
BOVIER, A ;
GHEZ, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (01) :45-66
[6]   α-continuity properties of one-dimensional quasicrystals [J].
Damanik, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (01) :169-182
[7]   Singular continuous spectrum for the period doubling Hamiltonian on a set of full measure [J].
Damanik, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (02) :477-483
[8]   OPERATORS WITH SINGULAR CONTINUOUS-SPECTRUM .2. RANK-ONE OPERATORS [J].
DELRIO, R ;
MAKAROV, N ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :59-67
[9]   Operators with singular continuous spectrum .4. Hausdorff dimensions, rank one perturbations, and localization [J].
delRio, R ;
Jitomirskaya, S ;
Last, Y ;
Simon, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 69 :153-200
[10]   RECURRENCE OF THE EIGENSTATES OF A SCHRODINGER OPERATOR WITH AUTOMATIC POTENTIAL [J].
DELYON, F ;
PEYRIERE, J .
JOURNAL OF STATISTICAL PHYSICS, 1991, 64 (1-2) :363-368