On generalized weakly conharmonically symmetric manifolds

被引:0
|
作者
Patra, Ananta [1 ]
Hui, Shyamal Kumar [2 ]
Patra, Akshoy [3 ]
机构
[1] Kandi Raj Coll, Dept Math, Murshidabad 742137, W Bengal, India
[2] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
[3] Govt Coll Engn & Text Technol, Dept Math, Murshidabad 742101, W Bengal, India
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2021年 / 46期
关键词
weakly symmetric manifold; generalized weakly symmetric manifold; conharmonic curvature tensor;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to study generalized weakly conharmonically symmetric manifold and obtained some of its geometric properties. Existence of such manifold is ensured by a non-trivial example.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [1] On decomposable weakly conharmonically symmetric manifolds
    Shaikh A.A.
    Hui S.K.
    Lobachevskii Journal of Mathematics, 2008, 29 (4) : 206 - 215
  • [2] Pseudo Conharmonically Symmetric Manifolds
    Zengin, Fusun Ozen
    Tasci, Ayse Yavuz
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 7 (03): : 246 - 255
  • [3] Conharmonically flat and conharmonically symmetric warped product manifolds
    Syied, Abdallah Abdelhameed
    De, Uday Chand
    Turki, Nasser Bin
    AIP ADVANCES, 2024, 14 (03)
  • [4] On Almost Pseudo Conharmonically Symmetric Manifolds
    Pal, Prajjwal
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (04): : 699 - 714
  • [5] phi -CONHARMONICALLY SYMMETRIC SASAKIAN MANIFOLDS
    Yildiz, Ahmet
    Turan, Mine
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (02): : 95 - 101
  • [6] On Generalized Weakly Symmetric Kenmotsu Manifolds
    Baishya, Kanak Kanti
    Chowdhury, Partha Roy
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (06): : 211 - 222
  • [7] Generalized Weakly Symmetric Sasakian Manifolds
    Pirhadi, V.
    Ramandi, G. Fasihi
    Azami, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (10)
  • [8] On generalized weakly symmetric α-cosymplectic manifolds
    Beyendi, Selahattin
    Yildirim, Mustafa
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (06): : 1745 - 1755
  • [9] ON HYPER GENERALIZED WEAKLY SYMMETRIC MANIFOLDS
    Baishya, Kanak K.
    Zengin, Fusun
    Mikes, Josef
    PROCEEDINGS OF THE NINETEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2018, : 66 - 74
  • [10] On Weakly Cyclic Generalized Z-Symmetric Manifolds
    Pankaj Pandey
    National Academy Science Letters, 2020, 43 : 347 - 350