SHARP ESTIMATES FOR THE SCHRODINGER EQUATION ASSOCIATED WITH THE TWISTED LAPLACIAN

被引:0
作者
Cardona Sanchez, Duvan [1 ,2 ]
机构
[1] Pontificia Univ Javeriana, Dept Math, Bogota, Colombia
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, B-9000 Ghent, Belgium
关键词
Strichartz estimate; Schrodinger equation; twisted Laplacian; Landau Hamiltonian; WAVE-EQUATION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note we obtain sharp Strichartz estimates for the Schrodinger equation associated with the twisted Laplacian on C-n congruent to R-2n. The initial data will be considered in suitable Sobolev spaces associated to the twisted Laplacian.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 1993, LECT HERMITE LAGUERR
[2]   Regularity of the Schrodinger equation for the harmonic oscillator [J].
Bongioanni, Bruno ;
Rogers, Keith M. .
ARKIV FOR MATEMATIK, 2011, 49 (02) :217-238
[3]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[4]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[5]   Spectral projections for the twisted Laplacian [J].
Koch, Herbert ;
Ricci, Fulvio .
STUDIA MATHEMATICA, 2007, 180 (02) :103-110
[6]   Diamagnetism of metals [J].
Landau, L. .
ZEITSCHRIFT FUR PHYSIK, 1930, 64 (9-10) :629-637
[7]  
Landau L.D., 1997, QUANTUM MECH NONRELA
[8]  
Lizorkin P. I., 1974, T MAT I STEKLOV, V131, P158
[9]   Bounds for the maximal function associated to periodic solutions of one-dimensional dispersive equations [J].
Moyua, A. ;
Vega, L. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :117-128
[10]   On Schrodinger propagator for the special Hermite operator [J].
Ratnakumar, P. K. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (02) :286-300