A generalized reduced fluid dynamic model for flow fields and electrodes in redox flow batteries

被引:6
|
作者
Cheng, Ziqiang [1 ]
Tenny, Kevin [2 ,3 ]
Pizzolato, Alberto [1 ]
Forner-Cuenca, Antoni [4 ]
Verda, Vittorio [1 ]
Chiang, Yet-Ming [2 ,5 ]
Brushett, Fikile [2 ,3 ]
Behrou, Reza [6 ]
机构
[1] Politecn Torino, Dept Energy, Turin, Italy
[2] MIT, Joint Ctr Energy Storage Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[4] Eindhoven Univ Technol, Dept Chem Engn & Chem, Eindhoven, Netherlands
[5] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[6] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
基金
荷兰研究理事会; 美国国家科学基金会;
关键词
depth-averaging; electrode; flow field; fluid dynamics; numerical modeling; redox flow batteries; 3-DIMENSIONAL MODEL; PORE-SCALE; PERFORMANCE; DESIGN; CHANNEL; DEPTH; TRANSPORT; GEOMETRY; PROGRESS;
D O I
10.1002/aic.17540
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
High-dimensional models typically require a large computational overhead for multiphysics applications, which hamper their use for broad-sweeping domain interrogation. Herein, we develop a modeling framework to capture the through-plane fluid dynamic response of electrodes and flow fields in a redox flow cell, generating a computationally inexpensive two-dimensional (2D) model. We leverage a depth-averaging approach that also accounts for variations in out-of-plane fluid motion and departures from Darcy's law that arise from averaging across three-dimensions (3D). Our resulting depth-averaged 2D model successfully predicts the fluid dynamic response of arbitrary in-plane flow field geometries, with discrepancies of <5% for both maximum velocity and pressure drop. This corresponds to reduced computational expense, as compared to 3D representations (<1% of duration and 10% of RAM usage), providing a platform to screen and optimize a diverse set of cell geometries.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] In-plane gradient design of flow fields enables enhanced convections for redox flow batteries
    Pan, Lyuming
    Xie, Jianyu
    Guo, Jincong
    Wei, Dongbo
    Qi, Honghao
    Rao, Haoyao
    Leung, Puiki
    Zeng, Lin
    Zhao, Tianshou
    Wei, Lei
    ENERGY ADVANCES, 2023, 2 (12): : 2006 - 2017
  • [42] Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields
    Zeng, Y. K.
    Zhou, X. L.
    Zeng, L.
    Yan, X. H.
    Zhao, T. S.
    JOURNAL OF POWER SOURCES, 2016, 327 : 258 - 264
  • [43] Reduced-order Dynamic Modeling and Robust Nonlinear Control of Fluid Flow Velocity Fields
    Jayaprakash, Anu Kossery
    MacKunis, William
    Golubev, Vladimir
    Stalnov, Oksana
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 3978 - 3983
  • [44] Embroidered porous electrodes for reduced pressure drop in vanadium flow batteries
    Xie, Jiangzhou
    Sulide, Suld
    Skyllas-Kazacos, Maria
    Menictas, Chris
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [45] Vanadium Redox Flow Batteries
    Guarnieri, Massimo
    Mattavelli, Paolo
    Petrone, Giovanni
    Spagnuolo, Giovanni
    IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2016, 10 (04) : 20 - 31
  • [46] Quinones for redox flow batteries
    Symons, Peter
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 29 (29)
  • [47] The renaissance in redox flow batteries
    M. K. Ravikumar
    Suman Rathod
    Nandini Jaiswal
    Satish Patil
    Ashok Shukla
    Journal of Solid State Electrochemistry, 2017, 21 : 2467 - 2488
  • [48] Viologen redox flow batteries
    Liu, Tianbiao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [49] Redox flow batteries: a review
    Adam Z. Weber
    Matthew M. Mench
    Jeremy P. Meyers
    Philip N. Ross
    Jeffrey T. Gostick
    Qinghua Liu
    Journal of Applied Electrochemistry, 2011, 41 : 1137 - 1164
  • [50] A Breakthrough for Redox Flow Batteries
    不详
    CHEMICAL ENGINEERING PROGRESS, 2014, 110 (08) : 5 - 6