Near optimal bounds for the Erdos distinct distances problem in high dimensions

被引:37
作者
Solymosi, Jozsef [1 ]
Vu, Van H. [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Dept Math, Piscataway, NJ 08854 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 匈牙利科学研究基金会;
关键词
D O I
10.1007/s00493-008-2099-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the number of distinct distances in a set of n points in R-d is Omega(n(2/d-2/d(d+2))), d >= 3. Erdos conjecture is Omega(n(2/d)).
引用
收藏
页码:113 / 125
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 2002, GRAD TEXT M
[2]   Distinct distances in three and higher dimensions [J].
Aronov, B ;
Pach, J ;
Sharir, M ;
Tardos, G .
COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (03) :283-293
[3]   A DETERMINISTIC VIEW OF RANDOM SAMPLING AND ITS USE IN GEOMETRY [J].
CHAZELLE, B ;
FRIEDMAN, J .
COMBINATORICA, 1990, 10 (03) :229-249
[4]   THE NUMBER OF DIFFERENT DISTANCES DETERMINED BY A SET OF POINTS IN THE EUCLIDEAN PLANE [J].
CHUNG, FRK ;
SZEMEREDI, E ;
TROTTER, WT .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (01) :1-11
[6]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[7]  
Erd??s P., 1946, AM MATH MONTHLY, V53, P248, DOI [10.1080/00029890.1946.11991674, DOI 10.1080/00029890.1946.11991674]
[8]  
IOSEVICH A, IN PRESS PADOVA
[9]  
MOSER L., 1952, AM MATH MONTHLY, V59, p[85, 91], DOI [10.1080/00029890.1952.11988075, 10.2307/2307105.MR, DOI 10.2307/2307105.MR]
[10]  
Pach J., 1995, Wiley-Interscience Series in Discrete Mathematics and Optimization