Tame class field theory for singular varieties over finite fields

被引:2
作者
Geisser, Thomas [1 ]
Schmidt, Alexander [2 ]
机构
[1] Rikkyo Univ, Dept Math, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan
[2] Heidelberg Univ, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
Class field theory; Suslin homology; Weil-etale cohomology; HOMOLOGY; COHOMOLOGY; CONJECTURE; SURFACES;
D O I
10.4171/JEMS/744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Schmidt and SpieB described the abelian tame fundamental group of a smooth variety over a finite field by using Suslin homology. In this paper we show that their result generalizes to singular varieties if one uses Weil-Suslin homology instead.
引用
收藏
页码:3467 / 3488
页数:22
相关论文
共 50 条
  • [1] TAME CLASS FIELD THEORY FOR SINGULAR VARIETIES OVER ALGEBRAICALLY CLOSED FIELDS
    Geisser, Thomas
    Schmidt, Alexander
    DOCUMENTA MATHEMATICA, 2016, 21 : 91 - 124
  • [2] Tame class field theory for global function fields
    Hess, Florian
    Massierer, Maike
    JOURNAL OF NUMBER THEORY, 2016, 162 : 86 - 115
  • [3] Varieties over finite fields: quantitative theory
    Vladut, S. G.
    Nogin, D. Yu.
    Tsfasman, M. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (02) : 261 - 322
  • [4] On integral class field theory for varieties over p-adic fields
    Geisser, Thomas H.
    Morin, Baptiste
    JOURNAL OF NUMBER THEORY, 2024, 260 : 41 - 70
  • [5] Tame class field theory for arithmetic schemes
    Schmidt, A
    INVENTIONES MATHEMATICAE, 2005, 160 (03) : 527 - 565
  • [6] Tame class field theory for arithmetic schemes
    Alexander Schmidt
    Inventiones mathematicae, 2005, 160 : 527 - 565
  • [7] Class field theory for open curves over local fields
    Hiranouchi, Toshiro
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (02): : 501 - 524
  • [8] Duality for relative logarithmic de Rham-Witt sheaves and wildly ramified class field theory over finite fields
    Jannsen, Uwe
    Saito, Shuji
    Zhao, Yigeng
    COMPOSITIO MATHEMATICA, 2018, 154 (06) : 1306 - 1331
  • [9] A survey on class field theory for varieties
    Schmidt, Alexander
    ALGORITHMIC ARITHMETIC, GEOMETRY, AND CODING THEORY, 2015, 637 : 301 - 306
  • [10] Class field theory for open curves over p-adic fields
    Hiranouchi, Toshiro
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (01) : 107 - 113