Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in C2

被引:38
作者
Christopher, C [1 ]
Rousseau, C
机构
[1] Univ Plymouth, Sch Math & Stat, Plymouth PL4 8AA, Devon, England
[2] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, CRM, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.5565/PUBLMAT_45101_04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper me consider complex differential systems in the plane, which are linearizable in the neighborhood of a nondegenerate centre. We find necessary and sufficient conditions for linearizability for the class of complex quadratic systems and for the class of complex cubic systems symmetric with respect to a centre. The sufficiency of these conditions is shown by exhibiting explicitly a linearizing change of coordinates, either of Darboux type or a generalization of it.
引用
收藏
页码:95 / 123
页数:29
相关论文
共 26 条
[21]   LOCAL BIFURCATION OF CRITICAL PERIODS IN VECTOR-FIELDS WITH HOMOGENEOUS NONLINEARITIES OF THE 3RD DEGREE [J].
ROUSSEAU, C ;
TONI, B .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (04) :473-484
[22]  
Sabatini M., 1999, APPL MATH WARSAW, V26, P357, DOI [10.4064/am-26-3-357-362, DOI 10.4064/AM-26-3-357-362]
[24]  
Schlomiuk D., 1993, EXPO MATH, V11, P433
[25]  
TEIXEIRA MA, 1998, CTR FOCUS PROBLEM RE
[26]   The problem of center for resonant singular points of polynomial vector fields [J].
Zoladek, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 137 (01) :94-118