Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in C2

被引:38
作者
Christopher, C [1 ]
Rousseau, C
机构
[1] Univ Plymouth, Sch Math & Stat, Plymouth PL4 8AA, Devon, England
[2] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, CRM, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.5565/PUBLMAT_45101_04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper me consider complex differential systems in the plane, which are linearizable in the neighborhood of a nondegenerate centre. We find necessary and sufficient conditions for linearizability for the class of complex quadratic systems and for the class of complex cubic systems symmetric with respect to a centre. The sufficiency of these conditions is shown by exhibiting explicitly a linearizing change of coordinates, either of Darboux type or a generalization of it.
引用
收藏
页码:95 / 123
页数:29
相关论文
共 26 条
[1]  
[Anonymous], 1971, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], DIFF EQUAT
[3]   BIFURCATION OF CRITICAL PERIODS FOR PLANE VECTOR-FIELDS [J].
CHICONE, C ;
JACOBS, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (02) :433-486
[4]   Isochronous centers in planar polynomial systems [J].
Christopher, CJ ;
Devlin, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (01) :162-177
[5]   INVARIANT ALGEBRAIC-CURVES AND CONDITIONS FOR A CENTER [J].
CHRISTOPHER, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1209-1229
[6]  
CHRISTOPHER CJ, UNPUB NORMALIZABLE I
[7]  
DARBOUX G., 1878, B SCI MATH ASTRONOMI, V1, P60
[8]  
DARBOUX G, 1878, B SCI MATH, P96
[9]  
DARBOUX G, 1878, B SCI MATH ASTRON, V2, P123
[10]  
Darboux G., 1878, B SCI MATH, V2, P151