Distribution of eigenvalues of Toeplitz matrices with smooth entries

被引:2
作者
Lubinsky, D. S. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Toeplitz matrices; Eigenvalue distribution; SERIES; CONJECTURE; CRITERIA; ROWS;
D O I
10.1016/j.laa.2021.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate distribution of eigenvalues of growing size Toeplitz matrices [a(n+k-j)](1 <= j,k <= n) as n -> infinity, when the entries {a(j)} are "smooth" in the sense, for example, that for some alpha > 0, a(j-1)a(j+1)/a(j)(2) = 1 - 1/a(j) (1 + o(1)), j -> infinity. Typically they are Maclaurin series coefficients of an entire function. We establish that when suitably scaled, the eigenvalue counting measures have limiting support on [0,1], and under mild additional smoothness conditions, the universal scaled and weighted limit distribution is vertical bar pi logt vertical bar(-1/2) dt on [0,1]. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:332 / 365
页数:34
相关论文
共 31 条
[1]  
[Anonymous], 1996, Pade Approximants
[2]   THE FISHER-HARTWIG CONJECTURE AND TOEPLITZ EIGENVALUES [J].
BASOR, EL ;
MORRISON, KE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :129-142
[3]  
Beckenbach E. F., 1961, Inequalities
[4]   Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices [J].
Boettcher, A. ;
Bogoya, J. M. ;
Grudsky, S. M. ;
Maximenko, E. A. .
SBORNIK MATHEMATICS, 2017, 208 (11) :1578-1601
[5]   Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols [J].
Bogoya, J. M. ;
Boettcher, A. ;
Grudsky, S. M. ;
Maximenko, E. A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 :606-637
[6]  
Bottcher A., 1999, Introduction to Large Truncated Toeplitz Matrices
[7]   Spectral measure of large random Hankel, Markov and Toeplitz matrices [J].
Bryc, W ;
Dembo, A ;
Jiang, TF .
ANNALS OF PROBABILITY, 2006, 34 (01) :1-38
[8]   On the Baker-Gammel-Wills conjecture in the theory of Pade approximants [J].
Buslaev, VI .
SBORNIK MATHEMATICS, 2002, 193 (5-6) :811-823
[9]  
Edrei A, 1939, COMPOS MATH, V7, P20
[10]  
Grenander U, 1958, TOEPLITZ FORMS