Random Walks That Find Perfect Objects and the Lovasz Local Lemma

被引:26
作者
Achlioptas, Dimitris [1 ]
Iliopoulos, Fotis [2 ]
机构
[1] Univ Calif Santa Cruz, Dept Comp Sci, Santa Cruz, CA 95064 USA
[2] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Lovasz Local Lemma; LLL; entropic method; ALGORITHMIC APPROACH; CONSTRUCTIVE PROOF;
D O I
10.1145/2818352
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give an algorithmic local lemma by establishing a sufficient condition for the uniform random walk on a directed graph to reach a sink quickly. Our work is inspired by Moser's entropic method proof of the Lovasz Local Lemma (LLL) for satisfiability and completely bypasses the Probabilistic Method formulation of the LLL. In particular, our method works when the underlying state space is entirely unstructured. Similarly to Moser's argument, the key point is that the inevitability of reaching a sink is established by bounding the entropy of the walk as a function of time.
引用
收藏
页数:29
相关论文
共 32 条
[1]   Random Walks that Find Perfect Objects and the Lovasz Local Lemma [J].
Achlioptas, Dimitris ;
Iliopoulos, Fotis .
2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014), 2014, :494-503
[2]   Vertex colouring edge partitions [J].
Addario-Berry, L ;
Aldred, REL ;
Dalal, K ;
Reed, BA .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (02) :237-244
[3]   A PARALLEL ALGORITHMIC VERSION OF THE LOCAL LEMMA [J].
ALON, N .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) :367-378
[4]   AN ALGORITHMIC APPROACH TO THE LOVASZ LOCAL LEMMA .1. [J].
BECK, J .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) :343-365
[5]  
Bissacot R, 2011, COMB PROBAB COMPUT, V20, P709, DOI [10.1017/S096354831100025, 10.1017/S0963548311000253]
[6]   DETERMINISTIC ALGORITHMS FOR THE LOVASZ LOCAL LEMMA [J].
Chandrasekaran, Karthekeyan ;
Goyal, Navin ;
Haeupler, Bernhard .
SIAM JOURNAL ON COMPUTING, 2013, 42 (06) :2132-2155
[7]  
Czumaj A, 2000, RANDOM STRUCT ALGOR, V17, P213, DOI 10.1002/1098-2418(200010/12)17:3/4<213::AID-RSA3>3.0.CO
[8]  
2-Y
[9]   The cutoff phenomenon in finite Markov chains [J].
Diaconis, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (04) :1659-1664
[10]   Extensions of Results on Rainbow Hamilton Cycles in Uniform Hypergraphs [J].
Dudek, Andrzej ;
Ferrara, Michael .
GRAPHS AND COMBINATORICS, 2015, 31 (03) :577-583