iWRAP: An Interface Threading Approach with Application to Prediction of Cancer-Related Protein-Protein Interactions
被引:38
|
作者:
Hosur, Raghavendra
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USAMIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
Hosur, Raghavendra
[1
,5
]
Xu, Jinbo
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
Toyota Technol Inst, Chicago, IL 60637 USAMIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
Xu, Jinbo
[1
,2
]
Bienkowska, Jadwiga
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
Biogen Idec Inc, Comp Biol Grp, Cambridge, MA 02142 USAMIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
Bienkowska, Jadwiga
[1
,3
]
Berger, Bonnie
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
MIT, Dept Math, Cambridge, MA 02139 USAMIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
Berger, Bonnie
[1
,4
]
机构:
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Toyota Technol Inst, Chicago, IL 60637 USA
[3] Biogen Idec Inc, Comp Biol Grp, Cambridge, MA 02142 USA
[4] MIT, Dept Math, Cambridge, MA 02139 USA
[5] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
Current homology modeling methods for predicting protein protein interactions (PPIs) have difficulty in the "twilight zone" (<40%) of sequence identities. Threading methods extend coverage further into the twilight zone by aligning primary sequences for a pair of proteins to a best-fit template complex to predict an entire three-dimensional structure. We introduce a threading approach, iWRAP, which focuses only on the protein interface. Our approach combines a novel linear programming formulation for interface alignment with a boosting classifier for interaction prediction. We demonstrate its efficacy on SCOPPI, a classification of PPIs in the Protein Databank, and on the entire yeast genome. iWRAP provides significantly improved prediction of PPIs and their interfaces in stringent cross-validation on SCOPPI. Furthermore, by combining our predictions with a full-complex threader, we achieve a coverage of 13% for the yeast PPIs, which is close to a 50% increase over previous methods at a higher sensitivity. As an application, we effectively combine iWRAP with genomic data to identify novel cancer-related genes involved in chromatin remodeling, nucleosome organization, and ribonuclear complex assembly. iWRAP is available at http://iwrap.csail.mit.edu. (C) 2010 Elsevier Ltd. All rights reserved.
机构:
Shanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R ChinaShanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R China
Zhang, Mengying
Su, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R ChinaShanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R China
Su, Qiang
Lu, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R ChinaShanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R China
Lu, Yi
Zhao, Manman
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R ChinaShanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R China
Zhao, Manman
Niu, Bing
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R ChinaShanghai Univ, Coll Life Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R China
机构:
Cornell Univ, Weill Med Coll, Inst Computat Biomed, Dept Physiol & Biophys, New York, NY 10021 USAWellcome Trust Sanger Inst, Cambridge CB10 1SA, England