Patient-Specific Dosimetry Using Pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) Dynamic PET/CT Imaging Before [131I]mIBG Targeted Radionuclide Therapy for Neuroblastoma

被引:46
作者
Huang, Shih-ying [1 ]
Bolch, Wesley E. [2 ]
Lee, Choonsik [3 ]
Van Brocklin, Henry F. [1 ]
Pampaloni, Miguel H. [1 ]
Hawkins, Randall A. [1 ]
Sznewajs, Aimee [4 ,5 ]
DuBois, Steven G. [4 ,5 ]
Matthay, Katherine K. [4 ,5 ]
Seo, Youngho [1 ,6 ,7 ,8 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[2] Univ Florida, J Grayton Pruitt Family Dept Biomed Engn, Gainesville, FL USA
[3] NCI, Div Canc Epidemiol & Genet, NIH, Bethesda, MD 20892 USA
[4] UCSF Sch Med, Dept Pediat, San Francisco, CA USA
[5] UCSF Benioff Childrens Hosp, San Francisco, CA USA
[6] Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA 94143 USA
[7] Univ Calif San Francisco, Joint Grad Grp Bioengn, San Francisco, CA 94143 USA
[8] Univ Calif Berkeley, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA
关键词
Neuroblastoma; I-131]-m-iodobenzylguanidine; Targeted radionuclide therapy; I-124]mIBG PET/CT imaging; Dosimetry; Monte Carlo simulation; INTERNAL DOSE ASSESSMENT; ICRP REFERENCE NEWBORN; REFRACTORY NEUROBLASTOMA; COMPUTATIONAL PHANTOMS; ABSORBED FRACTIONS; PHOTON; ADULT; I-131-METAIODOBENZYLGUANIDINE; ESCALATION; TUMOR;
D O I
10.1007/s11307-014-0783-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Iodine-131-m-iodobenzylguanidine ([I-131]mIBG)-targeted radionuclide therapy (TRT) is a standard treatment for recurrent or refractory neuroblastoma with response rates of 30-40 %. The aim of this study is to demonstrate patient-specific dosimetry using quantitative [I-124]mIBG positron emission tomography/X-ray computed tomography (PET/CT) imaging with a GEometry ANd Tracking 4 (Geant4)-based Monte Carlo method for better treatment planning. A Monte Carlo dosimetry method was developed using the Geant4 toolkit with voxelized anatomical geometry and source distribution as input. The presegmented hybrid computational human phantoms developed by the University of Florida and the National Cancer Institute (UF/NCI) were used as a surrogate to characterize the anatomy of a given patient. S values for I-131 were estimated by the phantoms coupled with Geant4 and compared with those estimated by OLINDA|EXM and MCNPX for the newborn model. To obtain patient-specific biodistribution of [I-131]mIBG, a 10-year-old girl with relapsed neuroblastoma was imaged with [I-124]mIBG PET/CT at four time points prior to the planned [I-131]mIBG TRT. The organ- and tumor-absorbed doses of the clinical case were estimated with the Geant4 method using the modified UF/NCI 10-year-old phantom with tumors and the patient-specific residence time. For the newborn model, the Geant4 S values were consistent with the MCNPX S values. The S value ratio of the Geant4 method to OLINDA|EXM ranged from 0.08 to 6.5 of all major organs. The [I-131]mIBG residence time quantified from the pretherapy [I-124]mIBG PET/CT imaging of the 10-year-old patient was mostly comparable to those previously reported. Organ-absorbed dose for the salivary glands was 98.0 Gy, heart wall 36.5 Gy, and liver 34.3 Gy, while tumor-absorbed dose ranged from 143.9 to 1,641.3 Gy in different sites. Patient-specific dosimetry for [I-131]mIBG TRT was accomplished using pretherapy [I-124]mIBG PET/CT imaging and a Geant4-based Monte Carlo dosimetry method. The Geant4 method with quantitative pretherapy imaging can provide dose estimates to normal organs and tumors with more realistic simulation geometry, and thus may improve treatment planning for [I-131]mIBG TRT.
引用
收藏
页码:284 / 294
页数:11
相关论文
共 35 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]  
[Anonymous], 1987, SPECIFIC ABSORBED FR
[4]   Metabolic Tumor Volume Predicts Disease Progression and Survival in Patients with Squamous Cell Carcinoma of the Anal Canal [J].
Bazan, Jose G. ;
Koong, Albert C. ;
Kapp, Daniel S. ;
Quon, Andrew ;
Graves, Edward E. ;
Loo, Billy W., Jr. ;
Chang, Daniel T. .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (01) :27-32
[5]  
Carlin S, 2003, CLIN CANCER RES, V9, P3338
[6]   Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT):: A feasibility study [J].
Ciernik, IF ;
Dizendorf, E ;
Baumert, BG ;
Reiner, B ;
Burger, C ;
Davis, JB ;
Lütolf, UM ;
Steinert, HC ;
Von Schulthess, GK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 57 (03) :853-863
[7]  
Dubois SG, 2013, Q J NUCL MED MOL IM, V57, P53
[8]   SPECIFIC ABSORBED FRACTIONS OF ENERGY FROM INTERNAL PHOTON SOURCES IN BRAIN-TUMOR AND CEREBROSPINAL-FLUID [J].
EVANS, JF ;
STABIN, MG ;
STUBBS, JB .
MEDICAL PHYSICS, 1995, 22 (03) :331-340
[9]  
Hauf S, 2013, RADIOACTIVE DECAYS G
[10]   Response functions for computing absorbed dose to skeletal tissues from photon irradiation-an update [J].
Johnson, Perry B. ;
Bahadori, Amir A. ;
Eckerman, Keith F. ;
Lee, Choonsik ;
Bolch, Wesley E. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (08) :2347-2365