Gromov-Witten invariants of jumping curves

被引:11
作者
Coskun, Izzet [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1090/S0002-9947-07-04284-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a vector bundle E on a smooth projective variety X, we can de. ne subschemes of the Kontsevich moduli space of genus-zero stable maps M-0,M-0(X,beta) parameterizing maps f : P-1 -> X such that the Grothendieck decomposition of f* E has a specified splitting type. In this paper, using a "compactification" of this locus, we de. ne Gromov-Witten invariants of jumping curves associated to the bundle E. We compute these invariants for the tautological bundle of Grassmannians and the Horrocks-Mumford bundle on P-4. Our construction is a generalization of jumping lines for vector bundles on P-n. Since for the tautological bundle of the Grassmannians the invariants are enumerative, we resolve the classical problem of computing the characteristic numbers of unbalanced scrolls.
引用
收藏
页码:989 / 1004
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1978, Principles of algebraic geometry
[2]  
[Anonymous], 1973, TOPOLOGY, DOI DOI 10.1016/0040-9383(73)90022-0
[3]  
BARTH W, 1987, VECTOR BUNDLES ALGEB, P35
[4]   Gromov-Witten invariants on Grassmannians [J].
Buch, AS ;
Kresch, A ;
Tamvakis, H .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) :901-915
[5]   On quantum cohomology rings of partial flag varieties [J].
Ciocan-Fontanine, I .
DUKE MATHEMATICAL JOURNAL, 1999, 98 (03) :485-524
[6]   Degenerations of surface scrolls and the Gromov-Witten invariants of Grassmannians [J].
Coskun, I .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (02) :223-284
[7]  
Coskun I., LITTLEWOOD RICHARDSO
[8]   ON THE UNIQUENESS OF THE HORROCKS-MUMFORD-BUNDLE [J].
DECKER, W ;
SCHREYER, FO .
MATHEMATISCHE ANNALEN, 1986, 273 (03) :415-443
[9]  
Di Francesco P., 1995, PROGR MATH, V129, P81
[10]  
EISENBUD D, 1987, P SYMP PURE MATH, V46, P3