Towards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators

被引:126
作者
Bae, Jaehyeong [1 ,2 ]
Kim, Min Soo [1 ]
Oh, Taegon [3 ]
Suh, Bong Lim [4 ]
Yun, Tae Gwang [5 ]
Lee, Seungjun [3 ,6 ]
Hur, Kahyun [4 ]
Gogotsi, Yury [7 ,8 ]
Koo, Chong Min [3 ,6 ,9 ]
Kim, Il-Doo [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Korea Inst Sci & Technol, Mat Architecturing Res Ctr, Seoul 02792, South Korea
[4] Korea Inst Sci & Technol, Extreme Mat Res Ctr, Adv Mat Res Div, Seoul 02792, South Korea
[5] Myongji Univ, Dept Mat Sci & Engn, Yongin 17058, Gyeonggi, South Korea
[6] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[7] Drexel Univ, Dept Mat Sci & Engn, 3141 Chestnut St, Philadelphia, PA 19104 USA
[8] Drexel Univ, AJ Drexel Nanomat Inst, 3141 Chestnut St, Philadelphia, PA 19104 USA
[9] Univ Sci & Technol, KIST Sch, Div Nano & Informat Technol, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
GRAPHENE OXIDE; MXENE; ELECTRODE; INTERCALATION; DISSOLUTION; ELECTRICITY; CELLULOSE; MAX;
D O I
10.1039/d1ee00859e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nano-hydroelectric technology utilizes hydraulic flow through electronically conducting nanomaterials to generate electricity in a simple, renewable, ubiquitous, and environmentally friendly manner. To date, several designs of nano-hydroelectric devices have been devised to maximize the electrokinetic interactions between water molecules and nanomaterials. However, the reported power generation of the state-of-the-art nano-hydroelectric generators is not sufficient for practical use, as tens of thousands of units were required to operate low-power electronics on a mW scale. Here, we utilize titanium carbide (Ti3C2Tx) MXene nanosheets, which have advantageous properties including metal-like conductivity and hydrophilicity, to facilitate the electrokinetic conversion of the transpiration-driven electrokinetic power generator (TEPG) with a remarkably improved energy generation efficiency compared to that of carbon-based TEPG. The Ti3C2Tx MXene-based TEPG delivered a high pseudo-streaming current of 120 mu A by the fast capillary flow promoted by MXene sheets coated on cotton fabric. The strong cationic affinity of Ti3C2Tx enables the generator to achieve an output of 0.68 V and 2.73 mA when NaCl solution is applied. Moreover, incorporation of a conducting polymer (i.e., Ti3C2Tx/polyaniline composite) enhanced the ionic diffusivity while maintaining the electrical network of Ti3C2Tx. The optimized Ti3C2Tx/polyaniline composite TEPG generated a maximum voltage of 0.54 V, a current of 8.2 mA, and a specific power density of 30.9 mW cm(-3), which was sufficient to successfully charge a commercial Li-ion battery as well as low-power electronics and devices with a volume of 6.72 cm(3).
引用
收藏
页码:123 / 135
页数:14
相关论文
共 80 条
[61]   Knittable and Washable Multifunctional MXene-Coated Cellulose Yarns [J].
Uzun, Simge ;
Seyedin, Shayan ;
Stoltzfus, Amy L. ;
Levitt, Ariana S. ;
Alhabeb, Mohamed ;
Anayee, Mark ;
Strobel, Christina J. ;
Razal, Joselito M. ;
Dion, Genevieve ;
Gogotsi, Yury .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (45)
[62]   Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance [J].
VahidMohammadi, Armin ;
Moncada, Jorge ;
Chen, Hengze ;
Kayali, Emre ;
Orangi, Jafar ;
Carrero, Carlos A. ;
Beidaghi, Majid .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (44) :22123-22133
[63]   Transparent, self-healing, arbitrary tailorable moist-electric film generator [J].
Wang, Haiyan ;
Cheng, Huhu ;
Huang, Yaxin ;
Yang, Ce ;
Wang, Debin ;
Li, Chun ;
Qu, Liangti .
NANO ENERGY, 2020, 67
[64]  
Wang JX, 2019, NAT COMMUN, V10, DOI [10.1038/s41467-019-10351-5, 10.1038/s41467-018-08086-w]
[65]   Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low-Frequency Water Wave Energy [J].
Wang, Xiaofeng ;
Niu, Simiao ;
Yin, Yajiang ;
Yi, Fang ;
You, Zheng ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2015, 5 (24)
[66]   Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2X [J].
Wang, Xuefeng ;
Shen, Xi ;
Gao, Yurui ;
Wang, Zhaoxiang ;
Yu, Richeng ;
Chen, Liquan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (07) :2715-2721
[67]   Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics [J].
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (22) :3553-3567
[68]   Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries [J].
Xie, Yu ;
Dall'Agnese, Yohan ;
Naguib, Michael ;
Gogotsi, Yury ;
Barsoum, Michel W. ;
Zhuang, Houlong L. ;
Kent, Paul R. C. .
ACS NANO, 2014, 8 (09) :9606-9615
[69]   Synthesis of an MXene/polyaniline composite with excellent electrochemical properties [J].
Xu, Huizhong ;
Zheng, Dehua ;
Liu, Faqian ;
Li, Wei ;
Lin, Jianjian .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (12) :5853-5858
[70]   An efficient polymer moist-electric generator [J].
Xu, Tong ;
Ding, Xiaoteng ;
Huang, Yaxin ;
Shao, Changxiang ;
Song, Long ;
Gao, Xue ;
Zhang, Zhipan ;
Qu, Liangti .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :972-978