GLOBAL MULTIPLICITY OF SOLUTIONS FOR A QUASILINEAR ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES

被引:0
作者
Chen, Siyu [1 ]
Santos, Carlos Alberto [2 ]
Yang, Minbo [1 ]
Zhou, Jiazheng [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; LOCAL SUPERLINEARITY; SOLITON-SOLUTIONS; CRITICAL GROWTH; R-N; EXISTENCE; EXPONENT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the modified elliptic problem -Delta u - u Delta u(2) = a(x)u(alpha) + lambda b(x)u(beta) in Omega with u(x) = 0 on partial derivative Omega, where Omega subset of R-N is a regular domain and N >= 3, 0< a(x) is an element of C(Omega) boolean AND L-infinity (Omega), b(x) is an element of C(Omega) boolean AND L-infinity (Omega), 0 < alpha < 1 < beta < infinity and lambda > 0 is a parameter. By using sub- and super-solutions methods and variational methods, we establish the existence of two nontrivial solutions for the modified equation with appropriate exponents alpha, beta and potentials a(x), b(x).
引用
收藏
页码:425 / 458
页数:34
相关论文
共 33 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[3]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[4]   Elliptic variational problems in RN with critical growth [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 168 (01) :10-32
[5]  
[Anonymous], 1989, SYMMETRY NATURE
[6]  
Arcoya D, 2013, DIFFER INTEGRAL EQU, V26, P119
[7]   Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities [J].
Badiale, M ;
Tarantello, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (06) :639-677
[8]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[9]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[10]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477