Interior Operators and Topological Connectedness

被引:17
作者
Castellini, G. [1 ]
Ramos, J. [1 ]
机构
[1] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR 00681 USA
关键词
Interior operator; connectedness; disconnectedness; constant morphism; Galois connection; CLOSURE OPERATORS;
D O I
10.2989/16073606.2010.507322
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A categorical notion of interior operator is used in topology to define connectedness and disconnectedness with respect to an interior operator. A commutative diagram of Galois connections is used to show a relationship between these notions and Arhangelskii and Wiegandt's notions of connectedness and disconnectedness with respect to a subclass of topological spaces. Examples are included.
引用
收藏
页码:290 / 304
页数:15
相关论文
共 9 条
[1]  
Adamek J., 1990, ABSTRACT CONCRETE CA
[2]  
Arhangel'skii A.V., 1975, GEN TOPOL APPL, V5, P9, DOI DOI 10.1016/0016-660X(75)90009-4
[3]   CLOSURE OPERATORS AND CONNECTEDNESS [J].
CASTELLINI, G ;
HAJEK, D .
TOPOLOGY AND ITS APPLICATIONS, 1994, 55 (01) :29-45
[4]  
Castellini G., 2003, MATH THEORY
[5]  
Dikranjan D., 1995, Categorical Structure of Closure Operators
[6]   A PRIMER ON GALOIS CONNECTIONS [J].
ERNE, M ;
KOSLOWSKI, J ;
MELTON, A ;
STRECKER, GE .
PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS, 1993, 704 :103-125
[7]  
Herrlich H., 1968, LECT NOTES MATH, V78
[8]  
Munkres James R, 1975, TOPOLOGY 1 COURSE
[9]  
Vorster S.J.R., 2000, Quaest. Math, V23, P405, DOI [10.2989/16073600009485987, DOI 10.2989/16073600009485987]