Quantification of a radical beam source for methyl radicals

被引:38
作者
Schwarz-Selinger, T [1 ]
Dose, V [1 ]
Jacob, W [1 ]
von Keudell, A [1 ]
机构
[1] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS | 2001年 / 19卷 / 01期
关键词
D O I
10.1116/1.1326939
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A radical beam source for methyl radicals (CH3) was characterized applying ionization-threshold mass spectrometry. The beam source is based on thermal dissociation of methane (CH4) or azomethane (N-2(CH3)(2)) in a heated tungsten capillary. A flux of (3+/-1)X10(13) cm(-2)s(-1) CH3 radicals is produced using methane as precursor gas and a capillary temperature of 1650 K. Alternatively, a flux of (3+/-1)X10(14) cm(-2) s(-1) CH3 is produced using azomethane as precursor gas and a capillary temperature of 1150 K. The dominant production of methyl from the precursor methane occurs due to reaction 2 CH4+M-->2 CH3+H-2+M at the hot tungsten surface. The dominant production of methyl from azomethane occurs due to the reaction N-2(CH3)(2)-->2 CH3+N-2. Besides methyl radicals, only stable molecules contribute to the emitted flux; within the detection limit, no atomic hydrogen is observed. From the comparison of ionization-threshold mass spectrometry and standard mass spectrometry, it is concluded that the cracking pattern of methane varies with the methane gas temperature. This is explained by the vibrational assisted dissociation of methane. (C) 2001 American Vacuum Society. [DOI: 10.1116/1.1326939].
引用
收藏
页码:101 / 107
页数:7
相关论文
共 35 条
[1]   Tritium recycling and retention in JET [J].
Andrew, P ;
Brennan, D ;
Coad, JP ;
Ehrenberg, J ;
Gadeberg, M ;
Gibson, A ;
Groth, M ;
How, J ;
Jarvis, ON ;
Jensen, H ;
Lässer, R ;
Marcus, F ;
Monk, R ;
Morgan, P ;
Orchard, J ;
Peacock, A ;
Pearce, R ;
Pick, M ;
Rossi, A ;
Schunke, B ;
Stamp, M ;
von Hellermann, M ;
Hillis, DL ;
Hogan, J .
JOURNAL OF NUCLEAR MATERIALS, 1999, 266 (266) :153-159
[2]   X-ray tomography on the TCV tokamak [J].
Anton, M ;
Weisen, H ;
Dutch, MJ ;
vonderLinden, W ;
Buhlmann, F ;
Chavan, R ;
Marletaz, B ;
Marmillod, P ;
Paris, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 1996, 38 (11) :1849-1878
[3]   ELECTRON-IMPACT IONIZATION AND DISSOCIATIVE IONIZATION OF THE CD3 AND CD2 FREE-RADICALS [J].
BAIOCCHI, FA ;
WETZEL, RC ;
FREUND, RS .
PHYSICAL REVIEW LETTERS, 1984, 53 (08) :771-774
[4]  
CELII FG, 1991, ANNU REV PHYS CHEM, V42, P643, DOI 10.1146/annurev.physchem.42.1.643
[5]   The detection of free radicals by means of a mass spectrometer [J].
Eltenton, GC .
JOURNAL OF CHEMICAL PHYSICS, 1942, 10 (06) :403-403
[6]   Surface studies of the reactivity of methyl, acetylene and atomic hydrogen at CVD diamond surfaces [J].
Foord, JS ;
Loh, KP ;
Jackman, RB .
SURFACE SCIENCE, 1998, 399 (01) :1-14
[8]   THERMAL DECOMPOSITION OF AZOMETHANE .1. EFFECT OF ADDED OLEFIN AND NITRIC OXIDE [J].
FORST, W ;
RICE, OK .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1963, 41 (03) :562-&
[9]  
Herzberg G., 1966, MOL SPECTRA MOL STRU, V3
[10]   DEVELOPMENT OF A METHYL RADICAL SOURCE FOR USE IN REACTION DYNAMICS STUDIES [J].
HEYDTMANN, H ;
BOGLU, D ;
SLOAN, JJ .
CHEMICAL PHYSICS, 1992, 168 (2-3) :293-300