Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions

被引:27
|
作者
Daniilidis, Aris [1 ,2 ]
Ley, Olivier [2 ,3 ]
Sabourau, Stephane [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Cerdanyola Vall, Spain
[2] Univ Tours, Lab Math & Phys Theor, CNRS, Federat Rech Denis Poisson FR 2964,UMR 6083, F-37400 Tours, France
[3] INSA Rennes, IRMAR, CNRS, UMR 6625, F-35708 Rennes, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2010年 / 94卷 / 02期
关键词
Planar dynamical system; Gradient trajectory; Convex function; Convex foliation; Lojasiewicz inequality; O-MINIMAL STRUCTURES; HILBERT-SPACE; CONVERGENCE;
D O I
10.1016/j.matpur.2010.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We hereby introduce and study the notion of self-contracted curves, which encompasses orbits of gradient systems of convex and quasiconvex functions. Our main result shows that bounded self-contracted planar curves have a finite length. We also give an example of a convex function defined in the plane whose gradient orbits spiral infinitely many times around the unique minimizer of the function. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:183 / 199
页数:17
相关论文
共 17 条
  • [1] SELF-CONTRACTED CURVES ARE GRADIENT FLOWS OF CONVEX FUNCTIONS
    Durand-cartagena, Estibalitz
    Lemenant, Antoine
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (06) : 2517 - 2531
  • [2] Self-contracted curves in Riemannian manifolds
    Daniilidis, Aris
    Deville, Robert
    Durand-Cartagena, Estibalitz
    Rifford, Ludovic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1333 - 1352
  • [3] Self-contracted curves have finite length
    Stepanov, Eugene
    Teplitskaya, Yana
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 455 - 481
  • [4] Metric and Geometric Relaxations of Self-Contracted Curves
    Daniilidis, Aris
    Deville, Robert
    Durand-Cartagena, Estibalitz
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (01) : 81 - 109
  • [5] Metric and Geometric Relaxations of Self-Contracted Curves
    Aris Daniilidis
    Robert Deville
    Estibalitz Durand-Cartagena
    Journal of Optimization Theory and Applications, 2019, 182 : 81 - 109
  • [6] Self-contracted Curves in CAT(0)-Spaces and Their Rectifiability
    Ohta, Shin-ichi
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 936 - 967
  • [7] Rectifiability of Self-Contracted Curves in the Euclidean Space and Applications
    A. Daniilidis
    G. David
    E. Durand-Cartagena
    A. Lemenant
    The Journal of Geometric Analysis, 2015, 25 : 1211 - 1239
  • [8] Rectifiability of Self-Contracted Curves in the Euclidean Space and Applications
    Daniilidis, A.
    David, G.
    Durand-Cartagena, E.
    Lemenant, A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1211 - 1239
  • [9] Self-Contracted Curves in Spaces With Weak Lower Curvature Bound
    Lebedeva, Nina
    Ohta, Shin-ichi
    Zolotov, Vladimir
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (11) : 8623 - 8656
  • [10] Ubiquitous Algorithms in Convex Optimization Generate Self-Contracted Sequences
    Boehm, Axel
    Daniilidis, Aris
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (01) : 119 - 128