Domination number of graphs associated with rings

被引:4
作者
Hashemi, Ebrahim [1 ]
Abdi, Mona [1 ]
Alhevaz, Abdollah [1 ]
Su, Huadong [2 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, POB 316-3619995161, Shahrood, Iran
[2] Nanning Normal Univ, Sch Math & Stat, Nanning 530001, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-divisor graph; compressed zero-divisor graph; unit graph; domination number; ZERO-DIVISOR GRAPH; UNIT GRAPHS;
D O I
10.1142/S0219498820500097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work aims to exploit the interplay between the algebraic properties of rings and the graph-theoretic structures of their associated graphs. Let R be an associative (not necessarily commutative) ring. We focus on the domination number of the zero-divisor graph Gamma(R), the compressed zero-divisor graph Gamma(E) (R) and the unit graph G(R). We find some relations between the domination number of the zero-divisor graph and that of the compressed zero-divisor graph. Moreover, some relations between the domination number of Gamma(R) and Gamma(R[x; alpha, delta]) as well as the relations between the domination number of G(R) and G(R[[x; alpha]]), are studied.
引用
收藏
页数:12
相关论文
共 25 条
[1]   Unit graphs of rings of polynomials and power series [J].
Afkhami M. ;
Khosh-Ahang F. .
Arabian Journal of Mathematics, 2013, 2 (3) :233-246
[2]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[3]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[4]   UNIT GRAPHS ASSOCIATED WITH RINGS [J].
Ashrafi, N. ;
Maimani, H. R. ;
Pournaki, M. R. ;
Yassemi, S. .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) :2851-2871
[5]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[6]   Reversible rings [J].
Cohn, PM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 :641-648
[7]  
Goodearl K., 2004, INTRO NONCOMMUTATIVE, V61, DOI DOI 10.1017/CBO9780511841699
[8]  
Grimaldi R. P, 1990, Congr. Numer, V71, P95
[9]   Polynomial extensions of quasi-Baer rings [J].
Hashemi, E ;
Moussavi, A .
ACTA MATHEMATICA HUNGARICA, 2005, 107 (03) :207-224
[10]  
Hashemi E, 2016, CATEG GEN ALGEBRAIC, V4, P95