Uniqueness of the topological multivortex solution in the self-dual Chern-Simons theory

被引:29
作者
Choe, K [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
D O I
10.1063/1.1834694
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a uniqueness result for the topological multivortex solution to the self-dual equations of the Abelian relativistic self-dual Chern-Simons-Higgs model. We prove that the topological multivortex solution is unique if the Chern-Simons coupling parameter kappa > 0 is sufficiently small. We also establish a uniqueness result for kappa > 0 sufficiently large. (C) 2005 American Institute of Physics.
引用
收藏
页数:22
相关论文
共 31 条
[1]  
ANGENENT S, 1987, DYNAMICS INFINITE DI
[2]  
Aubin Thierry, 1982, GRUNDLEHREN MATH WIS, V252
[3]   Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory [J].
Bartolucci, D ;
Thrantello, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 229 (01) :3-47
[4]   ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL [J].
BETHUEL, F ;
BREZIS, H ;
HELEIN, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :123-148
[5]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[6]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[7]   The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory [J].
Chae, D ;
Imanuvilov, OY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :119-142
[8]   Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation [J].
Chan, H ;
Fu, CC ;
Lin, CS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (02) :189-221
[9]   Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces [J].
Chen, CC ;
Lin, CS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (06) :728-771
[10]   QUALITATIVE PROPERTIES OF SOLUTIONS TO SOME NONLINEAR ELLIPTIC-EQUATIONS IN R(2) [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (02) :427-435