Investigation of N-identical few-body bound systems in the relativistic and non-relativistic description

被引:1
作者
Mousavi, Mohsen [1 ]
Shojaei, Mohammad Reza [1 ]
Juybari, Azadeh Hejazi [2 ]
机构
[1] Shahrood Univ Technol, Phys Dept, POB 3619995161-316, Shahrood, Iran
[2] Univ Mazandaran, Solid State Phys Dept, POB 47416-95447, Babol Sar, Iran
关键词
Quantum field theory; Few-body bound system; Jacobi coordinate; K-G equation; KLEIN-GORDON EQUATION; SCHRODINGER-EQUATION; NUCLEI; ENERGY; DIRAC;
D O I
10.1016/j.cjph.2017.03.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the N-identical interacting particles that construct a bound system, by using the Jacobi coordinate transformation in the hyper-spherical approach, the non-relativistic Schrodinger and relativistic Klein-Gordon equations under spin symmetry in D-dimensions are investigated for the modified Hulthen plus quadratic Yukawa potentials. The parametric Nikiforov-Uvarov and super-symmetric quantum mechanics (SUSYQM) methods are used to obtain the energy eigen-values and wave functions for a few-body bound system. To show the accuracy of the present model, the dependence of the few-body binding energies on the potential parameters has been investigated. (C) 2017 The Physical Society of the Republic of China (Taiwan). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:583 / 593
页数:11
相关论文
共 32 条
[1]   Dirac and Klein-Gordon equations with equal scalar and vector potentials [J].
Alhaidari, AD ;
Bahlouli, H ;
Al-Hasan, A .
PHYSICS LETTERS A, 2006, 349 (1-4) :87-97
[2]   Analytical Solution of Relativistic Few-Body Bound Systems with a Generalized Yukawa Potential [J].
Aslanzadeh, M. ;
Rajabi, A. A. .
FEW-BODY SYSTEMS, 2016, 57 (02) :145-154
[3]  
Avery J., 1989, Hyperspherical Harmonics
[4]   Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method [J].
Bayrak, O. ;
Boztosun, I. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :6955-6963
[5]   BARYON CURRENT MATRIX-ELEMENTS IN A LIGHT-FRONT FRAMEWORK [J].
CAPSTICK, S ;
KEISTER, BD .
PHYSICAL REVIEW D, 1995, 51 (07) :3598-3612
[6]  
Deta UA., 2013, Adv. Stud. Theor. Phys, V7, P647, DOI [10.12988/astp.2013.3549, DOI 10.12988/ASTP.2013.3549]
[7]   THE RADIATION THEORIES OF TOMONAGA, SCHWINGER, AND FEYNMAN [J].
DYSON, FJ .
PHYSICAL REVIEW, 1949, 75 (03) :486-502
[8]  
Fabre d. l., 1983, ANN PHYS-NEW YORK, V147, P281
[9]   Klein-Gordon equation with Hulth'en potential and position-dependent mass [J].
Farrokh, M. ;
Shojaei, M. R. ;
Rajabi, A. A. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (02)
[10]   SUPERSYMMETRIC SOLUTION OF THE SCHRODINGER EQUATION FOR WOODS-SAXON POTENTIAL BY USING THE PEKERIS APPROXIMATION [J].
Feizi, Hamed ;
Rajabi, Ali Akbar ;
Shojaei, Mohammad Reza .
ACTA PHYSICA POLONICA B, 2011, 42 (10) :2143-2152