N-, P- and Fe-tridoped nanoporous carbon derived from plant biomass: an excellent oxygen reduction electrocatalyst for zinc-air batteries

被引:113
作者
Wan, Wei [1 ]
Wang, Qiang [1 ]
Zhang, Li [1 ]
Liang, Hai-Wei [2 ]
Chen, Ping [1 ]
Yu, Shu-Hong [2 ]
机构
[1] Anhui Univ, Sch Chem & Chem Engn, Hefei 230601, Anhui, Peoples R China
[2] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei Natl Lab Phys Sci Microscale, Div Nanomat & Chem,Dept Chem, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-FREE ELECTROCATALYSTS; ORDERED POROUS CARBON; HIGHLY EFFICIENT; FUEL-CELLS; DOPED GRAPHENE; CORN SILK; CATHODE CATALYSTS; NITROGEN; PERFORMANCE; SUPERCAPACITORS;
D O I
10.1039/c6ta02150f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The zinc-air battery is a promising energy device because of its high energy density and high safety. Developing efficient electrocatalysts for the oxygen reduction reaction (ORR) in air electrode is of great importance for high-performance zinc air batteries. Herein, we first report N, P and Fe-tridoped nanoporous carbon ORR electrocatalysts derived from plant biomass corn silk. It is a cheap, accessible and recyclable biomass, which can offer a good basis for developing catalysts with low-cost and high yield production. The electrocatalysts were prepared by a hydrothermal process and a two step heat treatment process. The Fe element doped in the catalyst mainly came from FeCl3 and the P element came from corn silks. The N was from NH3 and corn silks. The biomass-derived catalyst exhibited a remarkably higher ORR activity, superior stability and tolerance to methanol poisoning effects in alkaline media than Pt/C catalyst. The catalyst also showed higher voltage and higher specific capacity than the Pt/C in a zinc air battery and it may be an alternative to Pt/C in the practical application of the zinc air battery. This study showed the possibility for rational design and preparation of high-performance electrocatalysts with a low-cost from a highly available and recyclable plant biomass.
引用
收藏
页码:8602 / 8609
页数:8
相关论文
共 47 条
[1]  
Ai W., 2014, ADV MATER, V26, P6186
[2]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[3]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[4]  
Chen P, 2014, ENERG ENVIRON SCI, V7, P4095, DOI [10.1039/c4ee02531h, 10.1039/C4EE02531H]
[5]   A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Qian, Yu-Hong ;
Li, Shan-Shan ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (23) :3192-3196
[6]   Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application [J].
Chen, Zhu ;
Yu, Aiping ;
Higgins, Drew ;
Li, Hui ;
Wang, Haijiang ;
Chen, Zhongwei .
NANO LETTERS, 2012, 12 (04) :1946-1952
[7]   Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction [J].
Chung, Hoon T. ;
Won, Jong H. ;
Zelenay, Piotr .
NATURE COMMUNICATIONS, 2013, 4
[8]   Electrocatalysis on Shape-Controlled Titanium Nitride Nanocrystals for the Oxygen Reduction Reaction [J].
Dong, Youzhen ;
Wu, Yongmin ;
Liu, Mengjia ;
Li, Jinghong .
CHEMSUSCHEM, 2013, 6 (10) :2016-2021
[9]  
Ebrahimzadeh MA, 2008, TURK J BIOL, V32, P43
[10]   High oxygen-reduction activity and durability of nitrogen-doped graphene [J].
Geng, Dongsheng ;
Chen, Ying ;
Chen, Yougui ;
Li, Yongliang ;
Li, Ruying ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :760-764