AN EXTENSION OF THE MULTIPLE ERDELYI-KOBER OPERATOR AND REPRESENTATIONS OF THE GENERALIZED HYPERGEOMETRIC FUNCTIONS

被引:2
作者
Karp, Dmitrii B. [1 ,2 ]
Lopez, Jose L. [3 ,4 ]
机构
[1] Far Eastern Fed Univ, Vladivostok, Russia
[2] Inst Appl Math FEBRAS, Vladivostok, Russia
[3] Univ Publ Navarra, Dept Estadist Informat & Matemat, Navarra, Spain
[4] INAMAT, Navarra, Spain
基金
俄罗斯科学基金会;
关键词
multiple Erdelyi-Kober operator; Meijer's G-function; generalized hypergeometric function; Hadamard finite part; INEQUALITIES; STIELTJES; GAMMA;
D O I
10.1515/fca-2018-0071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the extension of the multiple Erdelyi-Kober fractional integral operator of Kiryakova to arbitrary complex values of parameters by the way of regularization. The regularization involves derivatives of the function in question and the integration with respect to a kernel expressed in terms of special case of Meijer's G-function. An action of the regularized multiple Erdelyi-Kober operator on some simple kernels leads to decomposition formulas for the generalized hypergeometric functions. In the ultimate section, we define an alternative regularization better suited for representing the Bessel type generalized hypergeometric function F-p-1(p). A particular case of this regularization is then used to identify some new facts about the positivity and reality of zeros of this function.
引用
收藏
页码:1360 / 1376
页数:17
相关论文
共 28 条