Representations of certain binary quadratic forms as a sum of Lambert series and eta-quotients

被引:2
作者
Ye, Dongxi [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Binary quadratic forms; eta-quotients; Lambert series; PRODUCTS;
D O I
10.1142/S1793042115500578
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we establish formulas for the representations of binary quadratic forms of discriminants -44, -92, -108, -135 and -140 as a sum of Lambert series and etaquotients.
引用
收藏
页码:1073 / 1088
页数:16
相关论文
共 17 条
[11]   Rational representations of primes by binary quadratic forms [J].
Evans, Ronald ;
Van Veen, Mark .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (04) :513-528
[12]   Binary quadratic forms represented by a sum of nonzero squares [J].
Ji, Yun-Seong ;
Kim, Myung-Hwan ;
Oh, Byeong-Kweon .
JOURNAL OF NUMBER THEORY, 2015, 148 :257-271
[13]   EQUIDISTRIBUTION OF DIVISORS IN RESIDUE CLASSES AND REPRESENTATIONS BY BINARY QUADRATIC FORMS [J].
Drmota, Michael ;
Skalba, Mariusz .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (08) :2011-2018
[14]   Representations by certain octonary quadratic forms with coefficients 1, 3 or 9 [J].
Alaca, Ayse .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (06) :1365-1384
[15]   An identity connecting theta series associated with binary quadratic forms of discriminant Δ and Δ(prime)2 [J].
Patane, Frank .
JOURNAL OF NUMBER THEORY, 2015, 156 :290-316
[16]   Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms [J].
Berkovich, Alexander ;
Yesilyurt, Hamza .
RAMANUJAN JOURNAL, 2009, 20 (03) :375-408
[17]   Certain eta-quotients and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-regular overpartitions [J].
Chiranjit Ray ;
Kalyan Chakraborty .
The Ramanujan Journal, 2022, 57 (2) :453-470