Simultaneous feature selection and classification via Minimax Probability Machine

被引:0
作者
Yang, Liming [1 ]
Wang, Laisheng [1 ]
Sun, Yuhua [2 ]
Zhang, Ruiyan [3 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] USTB, Dept Math & Mech, Beijing 100083, Peoples R China
[3] Sci China Press, Beijing 100717, Peoples R China
关键词
Minimax probability machine; Feature selection; Probability of misclassification; Machine learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel method for simultaneous feature selection and classification by incorporating a robust L-1-norm into the objective function of Minimax Probability Machine (MPM). A fractional programming framework is derived by using a bound on the misclassification error involving the mean and covariance of the data. Furthermore, the problems are solved by the Quadratic Interpolation method. Experiments show that our methods can select fewer features to improve the generalization compared to MPM, which illustrates the effectiveness of the proposed algorithms.
引用
收藏
页码:754 / 760
页数:7
相关论文
共 18 条
  • [11] Kim S., 2006, Advances in Neural Information Processing Systems (NIPS)
  • [12] Lanckriet G.R.G., 2002, ADV NEURAL INFORM PR, V14
  • [13] Applications of second-order cone programming
    Lobo, MS
    Vandenberghe, L
    Boyd, S
    Lebret, H
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 284 (1-3) : 193 - 228
  • [14] MULTIVARIATE TSCHEBYSCHEFF INEQUALITIES
    MARSHALL, AW
    OLKIN, I
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04): : 1001 - 1014
  • [15] Prasad M, 2008, INT J COMPUT INT SYS, V1, P127
  • [16] Shlens J., 2009, TUTORIAL PRICIPAL CO
  • [17] Wei ZH, 2009, INT J COMPUT INT SYS, V2, P365
  • [18] Feature selection based on minimum error minimax probability machine
    Xu, Zenglin
    King, Irwin
    Lyu, Michael R.
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2007, 21 (08) : 1279 - 1292