Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance

被引:157
作者
Lu, Lei-Lei [1 ,2 ]
Zhang, Yi [2 ]
Pan, Zhao [2 ]
Yao, Hong-Bin [1 ,2 ]
Zhou, Fei [2 ]
Yu, Shu-Hong [1 ,2 ,3 ]
机构
[1] Hefei Natl Lab Phys Sci Microscale, Div Nanomat & Chem, Hefei, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Sci Ctr CAS, CAS Ctr Excellence Nanosci, Dept Chem, Hefei 230026, Anhui, Peoples R China
[3] Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithiophilic; Cu-Ni; Core-shell structures; Nanowire network; Li metal anode; SOLID-ELECTROLYTE INTERPHASE; CURRENT COLLECTOR; METAL ANODES; POLYSULFIDE; DEPOSITION; ION; EFFICIENCY; SURFACE; LAYER;
D O I
10.1016/j.ensm.2017.06.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal is long-term considered as a promising anode for high energy density lithium batteries. However, the practical application of lithium metal anode is hindered by the poor interfacial stability and lithium dendritic growth, which are originated from the relative infinite volume change of 'hostless' lithium metal anode. Here, we report a highly lithiophilic and stable Cu-Ni core-shell nanowires network host to accommodate the dramatic volume change of lithium and therefore improve the life-span of lithium metal anode. The Ni coating on the Cu nanowire endows the lithiophilic surface of the 3D network host facilitating the formation of the Li-Cu@Ni metallic nanocomposite anode via the facile infusion of molten lithium. The fabricated Li-Cu@Ni metallic anode shows superior electrochemical performance under galvanostatic cycling in the carbonate electrolyte, retaining flat voltage profiles over 500 cycles at a high current density of 3 mA cm(-2) with a low voltage polarization of 140 mV. Furthermore, the Li-Cu@Ni based full cell coupled with the LiCoO2 cathode exhibited good rate capability (similar to 90 mA h/g at 5C) and cycling stability at 5C for 250 cycles (0.015% decay per cycle).
引用
收藏
页码:31 / 38
页数:8
相关论文
共 41 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   THE CORRELATION BETWEEN SURFACE-CHEMISTRY, SURFACE-MORPHOLOGY, AND CYCLING EFFICIENCY OF LITHIUM ELECTRODES IN A FEW POLAR APROTIC SYSTEMS [J].
AURBACH, D ;
GOFER, Y ;
LANGZAM, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (11) :3198-3205
[3]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[4]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[5]  
Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
[6]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[7]   Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
ACS NANO, 2015, 9 (06) :6373-6382
[8]   Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators [J].
Chi, Mingming ;
Shi, Liyi ;
Wang, Zhuyi ;
Zhu, Jiefang ;
Mao, Xufeng ;
Zhao, Yin ;
Zhang, Meihong ;
Sun, Lining ;
Yuan, Shuai .
NANO ENERGY, 2016, 28 :1-11
[9]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[10]   Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy [J].
Cohen, YS ;
Cohen, Y ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (51) :12282-12291