Challenges and Opportunities of Applying Reinforcement Learning to Autonomous Racing

被引:6
作者
Wurman, Peter R. [1 ]
Stone, Peter [2 ,3 ]
Spranger, Michael [4 ]
机构
[1] Sony AI, Boston, MA 02116 USA
[2] Sony AI, Austin, TX 78712 USA
[3] Univ Texas Austin, Austin, TX 78712 USA
[4] Sony AI, Tokyo 1076032, Japan
关键词
Process control; Reinforcement learning; Games; Complexity theory; Intelligent systems; Autonomous vehicles; LEVEL;
D O I
10.1109/MIS.2022.3184427
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simulated motorsports are an exciting environment in which to explore the power and limitations of deep reinforcement learning. Racing requires precise control of a vehicle that is operating at its traction limits while competing wheel-to-wheel with other drivers. We recently demonstrated an agent that can beat the best drivers in the world at the racing game Gran Turismo. In this article, we briefly discuss some of the lessons learned and some of the remaining open research challenges.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 9 条
  • [1] Berner C., 2019, ARXIV
  • [2] Betz J., 2022, ARXIV
  • [3] Brockman G, 2016, Arxiv, DOI [arXiv:1606.01540, DOI 10.48550/ARXIV.1606.01540]
  • [4] DeepStack: Expert-level artificial intelligence in heads-up no-limit poker
    Moravcik, Matej
    Schmid, Martin
    Burch, Neil
    Lisy, Viliam
    Morrill, Dustin
    Bard, Nolan
    Davis, Trevor
    Waugh, Kevin
    Johanson, Michael
    Bowling, Michael
    [J]. SCIENCE, 2017, 356 (6337) : 508 - +
  • [5] Puterman ML., 1994, Markov decision processes: discrete stochastic dynamic programming. Series in probability and statistics, DOI [10.1002/9780470316887, DOI 10.1002/9780470316887]
  • [6] Mastering the game of Go with deep neural networks and tree search
    Silver, David
    Huang, Aja
    Maddison, Chris J.
    Guez, Arthur
    Sifre, Laurent
    van den Driessche, George
    Schrittwieser, Julian
    Antonoglou, Ioannis
    Panneershelvam, Veda
    Lanctot, Marc
    Dieleman, Sander
    Grewe, Dominik
    Nham, John
    Kalchbrenner, Nal
    Sutskever, Ilya
    Lillicrap, Timothy
    Leach, Madeleine
    Kavukcuoglu, Koray
    Graepel, Thore
    Hassabis, Demis
    [J]. NATURE, 2016, 529 (7587) : 484 - +
  • [7] Sutton R.S., 2005, IEEE Trans. Neural Netw., V16, P285
  • [8] Grandmaster level in StarCraft II using multi-agent reinforcement learning
    Vinyals, Oriol
    Babuschkin, Igor
    Czarnecki, Wojciech M.
    Mathieu, Michael
    Dudzik, Andrew
    Chung, Junyoung
    Choi, David H.
    Powell, Richard
    Ewalds, Timo
    Georgiev, Petko
    Oh, Junhyuk
    Horgan, Dan
    Kroiss, Manuel
    Danihelka, Ivo
    Huang, Aja
    Sifre, Laurent
    Cai, Trevor
    Agapiou, John P.
    Jaderberg, Max
    Vezhnevets, Alexander S.
    Leblond, Remi
    Pohlen, Tobias
    Dalibard, Valentin
    Budden, David
    Sulsky, Yury
    Molloy, James
    Paine, Tom L.
    Gulcehre, Caglar
    Wang, Ziyu
    Pfaff, Tobias
    Wu, Yuhuai
    Ring, Roman
    Yogatama, Dani
    Wunsch, Dario
    McKinney, Katrina
    Smith, Oliver
    Schaul, Tom
    Lillicrap, Timothy
    Kavukcuoglu, Koray
    Hassabis, Demis
    Apps, Chris
    Silver, David
    [J]. NATURE, 2019, 575 (7782) : 350 - +
  • [9] Outracing champion Gran Turismo drivers with deep reinforcement learning
    Wurman, Peter R.
    Barrett, Samuel
    Kawamoto, Kenta
    MacGlashan, James
    Subramanian, Kaushik
    Walsh, Thomas J.
    Capobianco, Roberto
    Devlic, Alisa
    Eckert, Franziska
    Fuchs, Florian
    Gilpin, Leilani
    Khandelwal, Piyush
    Kompella, Varun
    Lin, HaoChih
    MacAlpine, Patrick
    Oller, Declan
    Seno, Takuma
    Sherstan, Craig
    Thomure, Michael D.
    Aghabozorgi, Houmehr
    Barrett, Leon
    Douglas, Rory
    Whitehead, Dion
    Duerr, Peter
    Stone, Peter
    Spranger, Michael
    Kitano, Hiroaki
    [J]. NATURE, 2022, 602 (7896) : 223 - +