The cardioprotective effect of necrostatin requires the cyclophilin-d component of the mitochondrial permeability transition pore

被引:141
|
作者
Lim, S. Y. [1 ]
Davidson, S. M. [1 ]
Mocanu, M. M. [1 ]
Yellon, D. M. [1 ]
Smith, C. C. T. [1 ]
机构
[1] UCL Hosp, Sch Med, Hatter Cardiovasc Inst, London WC1E 6HX, England
基金
英国惠康基金;
关键词
necrostatin; mitochondrial permeability transition pore; cyclophilin-D;
D O I
10.1007/s10557-007-6067-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Necrostatin (Nec-1) protects against ischemia-reperfusion (IR) injury in both brain and heart. We have previously reported in this journal that necrostatin can delay opening of the mitochondrial permeability transition pore (MPTP) in isolated cardiomyocytes. Aim The aim of the present study was to investigate in more detail the role played by the MPTP in necrostatin-mediated cardioprotection employing mice lacking a key component of the MPTP, namely cyclophilin-D. Method Anaesthetized wild type (WT) and cyclophilin-D knockout (Cyp-D-/-) mice underwent an open-chest procedure involving 30 min of myocardial ischemia and 2 h of reperfusion, with subsequent infarct size assessed by triphenyltetrazolium staining. Nec-1, given at reperfusion, significantly limited infarct size in WT mice (17.7 +/- 3% vs. 54.3 +/- 3%, P < Ce0.05) but not in Cyp-D-/- mice (28.3 +/- 7% vs. 30.8 +/- 6%, P > 0.05). Conclusion The data obtained in Cyp-D-/- mice provide further evidence that Nec-1 protects against myocardial IR injury by modulating MPTP opening at reperfusion.
引用
收藏
页码:467 / 469
页数:3
相关论文
共 50 条
  • [1] The Cardioprotective Effect of Necrostatin Requires the Cyclophilin-D Component of the Mitochondrial Permeability Transition Pore
    S. Y. Lim
    S. M. Davidson
    M. M. Mocanu
    D. M. Yellon
    C. C. T. Smith
    Cardiovascular Drugs and Therapy, 2007, 21 : 467 - 469
  • [2] The mitochondrial permeability transition pore and cyclophilin D in cardioprotection
    Di Lisa, Fabio
    Carpi, Andrea
    Giorgio, Valentina
    Bernardi, Paolo
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2011, 1813 (07): : 1316 - 1322
  • [3] Physiologic Functions of Cyclophilin D and the Mitochondrial Permeability Transition Pore
    Elrod, John W.
    Molkentin, Jeffery D.
    CIRCULATION JOURNAL, 2013, 77 (05) : 1111 - 1122
  • [4] Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis
    Li, YM
    Johnson, N
    Capano, M
    Edwards, M
    Crompton, M
    BIOCHEMICAL JOURNAL, 2004, 383 : 101 - 109
  • [5] HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart
    Lam, Chi Keung
    Zhao, Wen
    Liu, Guan-Sheng
    Cai, Wen-Feng
    Gardner, George
    Adly, George
    Kranias, Evangelia G.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (47) : E6466 - E6475
  • [6] Mitochondrial permeability transition pore in Alzheimer's disease: Cyclophilin D and amyloid beta
    Du, Heng
    Yan, Shirley ShiDu
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2010, 1802 (01): : 198 - 204
  • [7] Electrophysiological characterization of the Cyclophilin D-deleted mitochondrial permeability transition pore
    De Marchi, Umberto
    Basso, Emy
    Szabo, Ildiko
    Zoratti, Mario
    MOLECULAR MEMBRANE BIOLOGY, 2006, 23 (06) : 521 - 530
  • [8] Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning
    Hausenloy, Derek J.
    Lim, Shiang Y.
    Ong, Sang-Ging
    Davidson, Sean M.
    Yellon, Derek M.
    CARDIOVASCULAR RESEARCH, 2010, 88 (01) : 67 - 74
  • [9] Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore
    Gutierrez-Aguilar, Manuel
    Baines, Christopher P.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2015, 1850 (10): : 2041 - 2047
  • [10] Cyclophilin D-mediated Mitochondrial Permeability Transition Regulates Mitochondrial Function
    Zhou, Shaoyun
    Yu, Qinwei
    Zhang, Luyong
    Jiang, Zhenzhou
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (08) : 620 - 629