A deep learning framework for segmentation of retinal layers from OCT images

被引:25
作者
Gopinath, Karthik [1 ]
Rangrej, Samrudhdhi B. [1 ]
Sivaswamy, Jayanthi [1 ]
机构
[1] IIIT Hyderabad, CVIT, Hyderabad, India
来源
PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR) | 2017年
关键词
OPTICAL COHERENCE TOMOGRAPHY; AUTOMATIC SEGMENTATION;
D O I
10.1109/ACPR.2017.121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of retinal layers from Optical Coherence Tomography (OCT) volumes is a fundamental problem for any computer aided diagnostic algorithm development. This requires preprocessing steps such as denoising, region of interest extraction, flattening and edge detection all of which involve separate parameter tuning. In this paper, we explore deep learning techniques to automate all these steps and handle the presence/absence of pathologies. A model is proposed consisting of a combination of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). The CNN is used to extract layers of interest image and extract the edges, while the LSTM is used to trace the layer boundary. This model is trained on a mixture of normal and AMD cases using minimal data. Validation results on three public datasets show that the pixel-wise mean absolute error obtained with our system is 1.30 +/- 0.48 which is lower than the inter-marker error of 1.79 +/- 0.76. Our model's performance is also on par with the existing methods.
引用
收藏
页码:888 / 893
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 2012, COMPUTER ENCE
[2]   Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images [J].
Chiu, Stephanie J. ;
Izatt, Joseph A. ;
O'Connell, Rachelle V. ;
Winter, Katrina P. ;
Toth, Cynthia A. ;
Farsiu, Sina .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (01) :53-61
[3]   Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation [J].
Chiu, Stephanie J. ;
Li, Xiao T. ;
Nicholas, Peter ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
OPTICS EXPRESS, 2010, 18 (18) :19413-19428
[4]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[5]   Automated segmentation of the macula by optical coherence tomography [J].
Fabritius, Tapio ;
Makita, Shuichi ;
Miura, Masahiro ;
Myllyla, Risto ;
Yasuno, Yoshiaki .
OPTICS EXPRESS, 2009, 17 (18) :15659-15669
[6]   Automated detection of retinal layer structures on optical coherence tomography images [J].
Fernández, DC ;
Salinas, HM ;
Puliafito, CA .
OPTICS EXPRESS, 2005, 13 (25) :10200-10216
[7]  
Fu D., 2016, 8 ICDIP 2016 INT SOC
[8]   Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search [J].
Garvin, Mona K. ;
Abramoff, Michael D. ;
Kardon, Randy ;
Russell, Stephen R. ;
Wu, Xiaodong ;
Sonka, Milan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (10) :1495-1505
[9]   Image enhancement and denoising by complex diffusion processes [J].
Gilboa, G ;
Sochen, N ;
Zeevi, YY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (08) :1020-1036
[10]  
Hussain M. A., 2016, IEEE TBME