Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations

被引:65
作者
Winkler, Julia K. [1 ]
Sies, Katharina [1 ]
Fink, Christine [1 ]
Toberer, Ferdinand [1 ]
Enk, Alexander [1 ]
Deinlein, Teresa [2 ]
Hofmann-Wellenhof, Rainer [2 ]
Thomas, Luc [3 ]
Lallas, Aimilios [4 ]
Blum, Andreas [5 ]
Stolz, Wilhelm [6 ]
Abassi, Mohamed S. [7 ]
Fuchs, Tobias [8 ]
Rosenberger, Albert [9 ]
Haenssle, Holger A. [1 ]
机构
[1] Heidelberg Univ, Dept Dermatol, Neuenheimer Feld 440, D-69120 Heidelberg, Germany
[2] Med Univ Graz, Dept Dermatol & Venerol, Graz, Austria
[3] Lyon Sud Univ Hosp, Dept Dermatol, Hosp Civils Lyon, Pierre Benite, France
[4] Aristotle Univ Thessaloniki, Dept Dermatol 1, Thessaloniki, Greece
[5] Publ Private & Teaching Practice, Constance, Germany
[6] Hosp Thalkirchner St, Dept Dermatol Allergol & Environm Med 2, Munich, Germany
[7] Univ Passau, Fac Comp Sci & Math, Passau, Germany
[8] FotoFinder Syst GmbH, Dept Res & Dev, Bad Birnbach, Germany
[9] Univ Goettingen, Ctr Stat, Inst Genet Epidemiol, Gottingen, Germany
关键词
Melanoma; Nevi; Dermoscopy; Deep learning; Convolutional neural network; EPILUMINESCENCE MICROSCOPY; MALIGNANT-MELANOMA; NODULAR MELANOMA; SKIN-CANCER; ABCD RULE; DIAGNOSIS; DERMATOSCOPY; METAANALYSIS; TRENDS;
D O I
10.1016/j.ejca.2019.11.020
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Deep learning convolutional neural networks (CNNs) show great potential for melanoma diagnosis. Melanoma thickness at diagnosis among others depends on melanoma localisation and subtype (e.g. advanced thickness in acrolentiginous or nodular melanomas). The question whether CNN may counterbalance physicians' diagnostic difficulties in these melanomas has not been addressed. We aimed to investigate the diagnostic performance of a CNN with approval for the European market across different melanoma localisations and subtypes. Methods: The current market version of a CNN (Moleanalyzer-Pro (R), FotoFinder Systems GmbH, Bad Birnbach, Germany) was used for classifications (malignant/benign) in six dermoscopic image sets. Each set included 30 melanomas and 100 benign lesions of related localisations and morphology (set-SSM: superficial spreading melanomas and macular nevi; set-LMM: lentigo maligna melanomas and facial solar lentigines/seborrhoeic keratoses/nevi; set-NM: nodular melanomas and papillomatous/dermal/blue nevi; set-Mucosa: mucosal melanomas and mucosal melanoses/macules/nevi; set-AMskin: acrolentiginous melanomas and acral (congenital) nevi; set-AMnail: subungual melanomas and subungual (congenital) nevi/ lentigines/ethnical type pigmentations). Results: The CNN showed a high-level performance in set-SSM, set-NM and set-LMM (sensitivities >93.3%, specificities >65%, receiver operating characteristics-area under the curve [ROC-AUC] >0.926). In set-AM(skin), the sensitivity was lower (83.3%) at a high specificity (91.0%) and ROC-AUC (0.928). A limited performance was found in set-mucosa (sensitivity 93.3%, specificity 38.0%, ROC-AUC 0.754) and set-AM(nail) (sensitivity 53.3%, specificity 68.0%, ROC-AUC 0.621). Conclusions: The CNN may help to partly counterbalance reduced human accuracies. However, physicians need to be aware of the CNN's limited diagnostic performance in mucosal and subungual lesions. Improvements may be expected from additional training images of mucosal and subungual sites. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [1] Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition
    Winkler, Julia K.
    Sies, Katharina
    Fink, Christine
    Toberer, Ferdinand
    Enk, Alexander
    Abassi, Mohamed S.
    Fuchs, Tobias
    Haenssle, Holger A.
    EUROPEAN JOURNAL OF CANCER, 2021, 145 : 146 - 154
  • [2] Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
    Haenssle, H. A.
    Fink, C.
    Schneiderbauer, R.
    Toberer, F.
    Buhl, T.
    Blum, A.
    Kalloo, A.
    Hassens, A. Ben Hadj
    Thomas, L.
    Enk, A.
    Uhlmann, L.
    ANNALS OF ONCOLOGY, 2018, 29 (08) : 1836 - 1842
  • [3] Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition
    Winkler, Julia K.
    Fink, Christine
    Toberer, Ferdinand
    Enk, Alexander
    Deinlein, Teresa
    Hofmann-Wellenhof, Rainer
    Thomas, Luc
    Lallas, Aimilios
    Blum, Andreas
    Stolz, Wilhelm
    Haenssle, Holger A.
    JAMA DERMATOLOGY, 2019, 155 (10) : 1135 - 1141
  • [4] Efficacy of a Deep Learning Convolutional Neural Network System for Melanoma Diagnosis in a Hospital Population
    Martin-Gonzalez, Manuel
    Azcarraga, Carlos
    Martin-Gil, Alba
    Carpena-Torres, Carlos
    Jaen, Pedro
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (07)
  • [5] Melanoma Detection Using Convolutional Neural Network
    Zhang, Runyuan
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 75 - 78
  • [6] Random Deep Neural Network for Melanoma Recognition
    Swiderski, Bartosz
    Osowski, Stanislaw
    Olszewski, Pawel
    Gielata, Lukasz
    Slowinska, Monika
    Lugowska, Iwona
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] Deep Neural Network for Fuzzy Automatic Melanoma Diagnosis
    Abbes, Wiem
    Sellami, Dorra
    VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4, 2019, : 47 - 56
  • [8] Effective Melanoma Recognition Using Deep Convolutional Neural Network with Covariance Discriminant Loss
    Guo, Lei
    Xie, Gang
    Xu, Xinying
    Ren, Jinchang
    SENSORS, 2020, 20 (20) : 1 - 14
  • [9] SkinLesNet: Classification of Skin Lesions and Detection of Melanoma Cancer Using a Novel Multi-Layer Deep Convolutional Neural Network
    Azeem, Muhammad
    Kiani, Kaveh
    Mansouri, Taha
    Topping, Nathan
    CANCERS, 2024, 16 (01)
  • [10] Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images
    Kaur, Ranpreet
    GholamHosseini, Hamid
    Sinha, Roopak
    Linden, Maria
    SENSORS, 2022, 22 (03)