Blowing-up solutions for the Yamabe equation

被引:12
作者
Esposito, Pierpaolo [1 ]
Pistoia, Angela [2 ]
机构
[1] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
关键词
blow-up; conformal invariance; nonlinear elliptic equations; Yamabe problem; SCALAR CURVATURE; RIEMANNIAN-MANIFOLDS; LOW DIMENSIONS; COMPACTNESS;
D O I
10.4171/PM/1952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a smooth, compact Riemannian manifold of dimension N >= 3. We consider the almost critical problem (P-epsilon) -Delta(g)u + N - 2/4(N - 1) Scal(g) u = u((N + 2)/(N - 2)+epsilon) in M, u > 0 in M, where Delta(g) denotes the Laplace-Beltrami operator, Scal(g) is the scalar curvature of g and epsilon is an element of R is a small parameter. It is known that problem (P-epsilon) does not have any blowing-up solutions when epsilon NE arrow 0, at least for N <= 24 or in the locally conformally flat case, and this is not true anymore when epsilon SE arrow 0. Indeed, we prove that, if N >= 7 and the manifold is not locally conformally flat, then problem (P-epsilon) does have a family of solutions which blow-up at a maximum point of the function xi -> vertical bar Weyl(g)(xi)vertical bar(g) as epsilon SE arrow 0. Here Weyl(g) denotes the Weyl curvature tensor of g.
引用
收藏
页码:249 / 276
页数:28
相关论文
共 23 条
[1]  
[Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa (3)
[2]  
[Anonymous], 1997, Adv. Diff. Equats
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]  
Aubin T., 1976, J. Diff. Geom., V11, P573
[5]  
Bianchi E., 1991, J FUNCT ANAL, V100, P18
[6]  
Brendle S., J AM MATH SOC, V21, P951
[7]  
Brendle S, 2009, J DIFFER GEOM, V81, P225
[8]  
Druet O, 2004, INT MATH RES NOTICES, V2004, P1143
[9]  
Esposito P., 2012, CONC AN APPL PDE ICT
[10]   The effect of linear perturbations on the Yamabe problem [J].
Esposito, Pierpaolo ;
Pistoia, Angela ;
Vetois, Jerome .
MATHEMATISCHE ANNALEN, 2014, 358 (1-2) :511-560