Multiple empirical kernel learning with locality preserving constraint

被引:14
作者
Fan, Qi [1 ]
Gao, Daqi [1 ]
Wang, Zhe [1 ]
机构
[1] E China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple kernel learning; Empirical kernel mapping; Locality preserving projection; Pattern recognition; Machine learning; DISCRIMINANT-ANALYSIS; RECOGNITION; FACE; PROJECTIONS; ALGORITHMS;
D O I
10.1016/j.knosys.2016.05.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple Kernel Learning (MKL) is flexible in dealing with problems involving multiple and heterogeneous data sources. However, the necessity of inner-product form restricts its application since to kernelize the algorithms unsatisfying the inner-product formulation is pretty difficult. To overcome this problem, Multiple Empirical Kernel Learning (MEKL) is proposed by explicitly mapping input samples to feature spaces, in which the mapped feature vectors are explicitly presented. Most existed MEKLs optimize the learning framework by minimizing empirical risk, regularization risk and the loss term of multiple feature spaces. As little attention is paid to preserving local structure among training samples, the learned classifier might lack of locality similarity preserving property, which might result in unfavorable performance. Inspired by Locality Preserving Projection (LPP) which is to seek the optimal projection by preserving the local property of input samples, we introduce the locality preserving constraint into the learning framework to propose a novel Multiple Empirical Kernel Learning with Locality Preserving Constraint (MEKL-LPC). MEKL-LPC shows lower generalization error bound than both the Modification of Ho-Kashyap algorithm with Squared approximation of the misclassification error (MHKS) and Multi-Kernel MHKS (MultiK-MHKS) in terms of Rademacher complexity. Experiments on several real-world datasets demonstrate that MEKL-LPC outperforms the compared algorithms. The contributions of this work are: (i) originally integrating locality preserving constraint into MEKL, (ii) proposing a lower generalization error bound algorithm, i.e. MEKL-LPC. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 47 条
[1]   EasyMKL: a scalable multiple kernel learning algorithm [J].
Aiolli, Fabio ;
Donini, Michele .
NEUROCOMPUTING, 2015, 169 :215-224
[2]   Human activity recognition using multi-features and multiple kernel learning [J].
Althloothi, Salah ;
Mahoor, Mohammad H. ;
Zhang, Xiao ;
Voyles, Richard M. .
PATTERN RECOGNITION, 2014, 47 (05) :1800-1812
[3]  
[Anonymous], 2000, NATURE STAT LEARNING, DOI DOI 10.1007/978-1-4757-3264-1
[4]  
[Anonymous], P 21 INT C MACH LEAR
[5]  
Bache K., 2013, UCI Machine Learning Repository
[6]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[7]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[8]   Stability and generalization [J].
Bousquet, O ;
Elisseeff, A .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (03) :499-526
[9]   Multiple Kernel Learning for Visual Object Recognition: A Review [J].
Bucak, Serhat S. ;
Jin, Rong ;
Jain, Anil K. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (07) :1354-1369
[10]  
Demsar J, 2006, J MACH LEARN RES, V7, P1