A novel fractional sliding mode control configuration for synchronizing disturbed fractional-order chaotic systems

被引:22
作者
Rabah, Karima [1 ]
Ladaci, Samir [2 ]
Lashab, Mohamed [3 ]
机构
[1] 20th August 1955 Univ Skikda, Dept Elect Engn, Skikda 21000, Algeria
[2] Natl Polytech Sch Constantine, Dept EEA, BP 75A, Ali Mendjeli 25100, Constantine, Algeria
[3] Univ Larbi Ben MHidi Oum El Bouaghi, Dept Sci & Technol, Oum El Bouaghi 04000, Algeria
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 89卷 / 03期
关键词
Sliding mode control; chaos synchronization; fractional-order chaotic system; Lyapunov stability; DYNAMICS; DESIGN;
D O I
10.1007/s12043-017-1443-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new design of fractional-order sliding mode control scheme is proposed for the synchronization of a class of nonlinear fractional-order systems with chaotic behaviour. The considered design approach provides a set of fractional-order laws that guarantee asymptotic stability of fractional-order chaotic systems in the sense of the Lyapunov stability theorem. Two illustrative simulation examples on the fractional-order Genesio-Tesi chaotic systems and the fractional-order modified Jerk systems are provided. These examples show the effectiveness and robustness of this control solution.
引用
收藏
页数:13
相关论文
共 46 条
[1]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[2]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[3]  
Arena P., 1997, ECCTD '97. Proceedings of the 1997 European Conference on Circuit Theory and Design, P1259
[4]   Control of a class of fractional-order chaotic systems via sliding mode [J].
Chen, Di-yi ;
Liu, Yu-xiao ;
Ma, Xiao-yi ;
Zhang, Run-fan .
NONLINEAR DYNAMICS, 2012, 67 (01) :893-901
[5]   Efficient solution of multi-term fractional differential equations using P(EC)mE methods [J].
Diethelm, K .
COMPUTING, 2003, 71 (04) :305-319
[6]   Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators [J].
Duarte, FBM ;
Machado, JAT .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :315-342
[7]   Chaos in fractional-order Genesio-Tesi system and its synchronization [J].
Faieghi, Mohammad Reza ;
Delavari, Hadi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) :731-741
[8]  
Guo Y, 2016, LECT NOTES ELECT ENG, V404
[9]   Chaotic synchronisation and secure communication via sliding-mode and impulsive observers [J].
Hamiche, Hamid ;
Guermah, Said ;
Djennoune, Said ;
Kemih, Karim ;
Ghanes, Malek ;
Barbot, Jean-Pierre .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 20 (04) :305-318
[10]   Control of Chaos via Fractional-Order State Feedback Controller [J].
Hosseinnia, Seyed Hassan ;
Ghaderi, Reza ;
Ranjbar, Abolfazl ;
Abdous, Farzad ;
Momani, Shaher .
NEW TRENDS IN NANOTECHNOLOGY AND FRACTIONAL CALCULUS APPLICATIONS, 2010, :511-+