Quantitative estimation of kink-band strengthening in an Mg-Zn-Y single crystal with LPSO nanoplates

被引:31
作者
Hagihara, Koji [1 ,2 ]
Ueyama, Ryohei [2 ]
Tokunaga, Toko [1 ]
Yamasaki, Michiaki [3 ,4 ]
Kawamura, Yoshihito [3 ,4 ]
Nakano, Takayoshi [2 ]
机构
[1] Nagoya Inst Technol, Dept Phys Sci & Engn, Nagoya, Aichi 4668555, Japan
[2] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, Osaka, Japan
[3] Kumamoto Univ, Magnesium Res Ctr, Kumamoto, Japan
[4] Kumamoto Univ, Dept Mat Sci, Kumamoto, Japan
基金
日本学术振兴会;
关键词
Kink-band strengthening; magnesium alloys; plastic deformation; LPSO nanoplate; dislocation; STACKING ORDERED PHASE; ROOM-TEMPERATURE DEFORMATION; MECHANICAL-PROPERTIES; COMPRESSIVE DEFORMATION; GRAIN-SIZE; ALLOYS; BEHAVIOR; MICROSTRUCTURE; DISLOCATIONS; EVOLUTION;
D O I
10.1080/21663831.2021.1974593
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
IMPACT STATEMENT By the quantitative estimation using the single crystal, the origin of the anomalous ability of kink bands acting as barriers that hinder the motion of dislocation was elucidated. Kink-band strengthening was first quantitatively evaluated using an Mg-Zn-Y single crystal containing long-period stacking ordered (LPSO) nanoplates. The ability of a kink-band boundary to act as a barrier that hinders the motion of dislocations is high and comparable to that of a general random grain boundary. Nevertheless, a kink-band boundary is regarded as a simple tilt boundary in the dislocation model. One reason for the anomalous ability of kink-band boundary acting as barriers is related to its peculiar hierarchical structure, in which many small kink bands with high crystal rotation angles accumulate in a localized region.
引用
收藏
页码:467 / 474
页数:8
相关论文
共 35 条
[1]   Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J].
Barnett, MR ;
Keshavarz, Z ;
Beer, AG ;
Atwell, D .
ACTA MATERIALIA, 2004, 52 (17) :5093-5103
[2]   Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2 [J].
Barsoum, MW ;
Farber, L ;
El-Raghy, T .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (07) :1727-1738
[3]  
Callister W, 2014, MAT SCI ENG INTRO
[4]   Room temperature deformation of LPSO structures by non-basal slip [J].
Chen, Ran ;
Sandloebes, Stefanie ;
Zeng, Xiaoqin ;
Li, Dejiang ;
Korte-Kerzel, Sandra ;
Raabe, Dierk .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 682 :354-358
[5]   The structure of long period stacking/order Mg-Zn-RE phases with extended non-stoichiometry ranges [J].
Egusa, D. ;
Abe, E. .
ACTA MATERIALIA, 2012, 60 (01) :166-178
[6]  
Egusa D, 2013, MATER TRANS, V54, P698, DOI [10.2320/matertrans.M1201216, 10.2320/matertrans.MI201216]
[7]   Combination of in-situ diffraction experiments and acoustic emission testing to understand the compression behavior of Mg-Y-Zn alloys containing LPSO phase under different loading conditions [J].
Garces, G. ;
Mathis, K. ;
Medina, J. ;
Horvath, K. ;
Drozdenko, D. ;
Onorbe, E. ;
Dobron, P. ;
Perez, P. ;
Klaus, M. ;
Adeva, P. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 106 :107-128
[8]   Reverse tension/compression asymmetry of a Mg-Y-Zn alloys containing LPSO phases [J].
Garces, G. ;
Perez, P. ;
Cabeza, S. ;
Lin, H. K. ;
Kim, S. ;
Gan, W. ;
Adeva, P. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 647 :287-293
[9]   High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase [J].
Hagihara, K. ;
Kinoshita, A. ;
Fukusumi, Y. ;
Yamasaki, M. ;
Kawamura, Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 560 :71-79
[10]   Plastic Deformation Behavior of Mg12ZnY LPSO-Phase with 14H-Typed Structure [J].
Hagihara, K. ;
Sugino, Y. ;
Fukusumi, Y. ;
Umakoshi, Y. ;
Nakano, T. .
MATERIALS TRANSACTIONS, 2011, 52 (06) :1096-1103