QUASICONFORMAL MAPS WITH THIN DILATATIONS

被引:0
作者
Bishop, Christopher J. [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
quasiconformal maps; conformal modulus; quasiconformal folding; Pomp eiu?s formula; holomorphic dynamics; SET;
D O I
10.5565/PUBLMAT6622207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an estimate that quantifies the fact that a normalized quasicon-formal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applica-tions of the author's quasiconformal folding method for constructing entire functions; in particular an application to constructing transcendental wandering domains given by Fagella, Godillon, and Jarque [7].
引用
收藏
页码:715 / 727
页数:13
相关论文
共 15 条
[1]  
Ahlfors L. V, 2006, University lecture series, V038, DOI DOI 10.1090/ULECT/038
[2]   Speiser class Julia sets with dimension near one [J].
Albrecht, Simon ;
Bishop, Christopher J. .
JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (01) :49-98
[3]   Prescribing the postsingular dynamics of meromorphic functions [J].
Bishop, Christopher J. ;
Lazebnik, Kirill .
MATHEMATISCHE ANNALEN, 2019, 375 (3-4) :1761-1782
[4]   Constructing entire functions by quasiconformal folding [J].
Bishop, Christopher J. .
ACTA MATHEMATICA, 2015, 214 (01) :1-60
[5]  
Dynkin E. M., 1997, ALGEBRA ANALIZ, V9, P601
[6]   Univalent wandering domains in the Eremenko-Lyubich class [J].
Fagella, Nuria ;
Jarque, Xavier ;
Lazebnik, Kirill .
JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01) :369-395
[7]   Wandering domains for composition of entire functions [J].
Fagella, Nuria ;
Godillon, Sebastian ;
Jarque, Xavier .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) :478-496
[8]  
Goldberg A.A., 1970, Transla- tions of Mathematical Monographs, V236
[9]  
Bishop CJ, 2021, Arxiv, DOI arXiv:2103.16702
[10]   Several constructions in the Eremenko-Lyubich class [J].
Lazebnik, Kirill .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) :611-632