Stability of the high frequency fast multipole method for Helmholtz' equation in three dimensions

被引:7
作者
Nilsson, M [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
关键词
Fast Multipole Method; Helmholtz' equation; stability; error estimate;
D O I
10.1007/s10543-004-4412-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stability limits for the high frequency plane wave expansion, which approximates the free space Greens function in Helmholtz' equation, are derived. This expansion is often used in the Fast Multipole Method for scattering problems in electromagnetics and acoustics. It is shown that while the original approximation of the Green's function, based on Gegenbauer's addition theorem, is stable except for overflows, the plane wave expansion becomes unstable due to errors from roundoff, interpolation, choice of quadrature rule and approximation of the translation operator. Numerical experiments validate the theoretical estimates.
引用
收藏
页码:773 / 791
页数:19
相关论文
共 12 条
[1]  
Arfken GeorgeB., 1995, Mathematical Methods for Physicists, Fourth Edition, VFourth
[2]  
Chew W. C., 2001, FAST EFFICIENT ALGOR
[3]  
Coifman R., 1993, IEEE Antennas and Propagation Magazine, V35, P7, DOI 10.1109/74.250128
[4]   The fast multipole method I: error analysis and asymptotic complexity [J].
Darve, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (01) :98-128
[5]   The fast multipole method: Numerical implementation [J].
Darve, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (01) :195-240
[6]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[7]   Accelerating fast multipole methods for the Helmholtz equation at low frequencies [J].
Greengard, L ;
Huang, JF ;
Rokhlin, V ;
Wandzura, S .
IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1998, 5 (03) :32-38
[8]   Error control of the translation operator in 3D MLFMA [J].
Hastriter, ML ;
Ohnuki, S ;
Chew, WC .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 37 (03) :184-188
[9]  
NILSSON M, 2003, 2003049 UPPS U DEP I
[10]   Numerical accuracy of multipole expansion for 2-D MLFMA [J].
Ohnuki, S ;
Chew, WC .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (08) :1883-1890