Simultaneous stabilization for a collection of single-input nonlinear systems

被引:44
作者
Wu, JL [1 ]
机构
[1] Hwa Hsia Inst Technol, Dept Elect Engn, Taipei 235, Taiwan
关键词
control Lyapunov function; nonlinear systems; simultaneous stabilization; state feedback;
D O I
10.1109/TAC.2005.843877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel method for designing a controller that simultaneously stabilizes a collection of single-input nonlinear systems. The control Lyapunov function approach is used to derive necessary and sufficient conditions for the existence of time-invariant simultaneously stabilizing state feedback controllers. Additionally, a universal formula for constructing a continuous simultaneously stabilizing controller when the provided sufficient condition is satisfied is presented. For any collection of second-order (and third-order) feedback linearizable systems in canonical form, global simultaneous stabilization via a single state feedback controller is shown to be always possible. Two examples are included for illustration.
引用
收藏
页码:328 / 337
页数:10
相关论文
共 33 条
[1]  
[Anonymous], SYSTEMS CONTROL LETT
[2]  
[Anonymous], 2013, Nonlinear control systems
[3]  
Antsaklis PJ, 1998, LINEAR SYSTEMS
[4]   STABILIZATION WITH RELAXED CONTROLS [J].
ARTSTEIN, Z .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) :1163-1173
[5]   Robust stabilization of nonlinear systems with pointwise norm-bounded uncertainties: A control Lyapunov function approach [J].
Battilotti, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) :3-17
[6]  
Blondel V., 1994, SIMULTANEOUS STABILI
[7]   Simultaneous stabilization via static output feedback and state feedback [J].
Cao, YY ;
Sun, YX ;
Lam, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (06) :1277-1282
[8]   A computational method for simultaneous LQ optimal control design via piecewise constant output feedback [J].
Cao, YY ;
Lam, J .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05) :836-842
[9]  
Efimov DV, 2002, IEEE DECIS CONTR P, P1882, DOI 10.1109/CDC.2002.1184799
[10]   Locally optimal and robust backstepping design [J].
Ezal, K ;
Pan, ZG ;
Kokotovic, PV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) :260-271