Velocity, energy, and helicity of vortex knots and unknots

被引:36
作者
Maggioni, F. [1 ]
Alamri, S. [2 ]
Barenghi, C. F. [3 ]
Ricca, R. L. [4 ]
机构
[1] Univ Bergamo, Dept Math Stat Comp Sci & Applicat, I-24127 Bergamo, Italy
[2] Taibah Univ, Dept Appl Math, Coll Appl Sci, Al Munawarrah, Saudi Arabia
[3] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] Univ Milano Bicocca, Dept Math & Applicat, I-20125 Milan, Italy
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 02期
关键词
SUPERFLUID HE-4; RING; TURBULENCE; VORTICES; MOTION; TANGLE; NUMBER; WAVES;
D O I
10.1103/PhysRevE.82.026309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we determine the velocity, the energy, and estimate writhe and twist helicity contributions of vortex filaments in the shape of torus knots and unknots (as toroidal and poloidal coils) in a perfect fluid. Calculations are performed by numerical integration of the Biot-Savart law. Vortex complexity is parametrized by the winding number w given by the ratio of the number of meridian wraps to that of longitudinal wraps. We find that for w < 1 vortex knots and toroidal coils move faster and carry more energy than a reference vortex ring of same size and circulation, whereas for w > 1 knots and poloidal coils have approximately same speed and energy of the reference vortex ring. Helicity is dominated by writhe contributions. Finally, we confirm the stabilizing effect of the Biot-Savart law for all knots and unknots tested, found to be structurally stable over a distance of several diameters. Our results also apply to quantized vortices in superfluid He-4.
引用
收藏
页数:9
相关论文
共 43 条
[1]   NUMERICAL INVESTIGATION OF THE FLOW PROPERTIES OF HE-II [J].
AARTS, RGKM ;
DEWAELE, ATAM .
PHYSICAL REVIEW B, 1994, 50 (14) :10069-10079
[2]  
Alamri S. Z., 2009, THESIS NEWCASTLE U
[3]   Reconnection of Superfluid Vortex Bundles [J].
Alamri, Sultan Z. ;
Youd, Anthony J. ;
Barenghi, Carlo F. .
PHYSICAL REVIEW LETTERS, 2008, 101 (21)
[4]  
[Anonymous], 1992, VORTEX DYNAMICS, DOI DOI 10.1017/CBO9780511624063
[5]  
[Anonymous], 1880, Philos. Mag., DOI DOI 10.1080/14786448008626912
[6]   LOCALIZED-INDUCTION CONCEPT ON A CURVED VORTEX AND MOTION OF AN ELLIPTIC VORTEX RING [J].
ARMS, RJ ;
HAMA, FR .
PHYSICS OF FLUIDS, 1965, 8 (04) :553-&
[7]   Anomalous translational velocity of vortex ring with finite-amplitude Kelvin waves [J].
Barenghi, C. F. ;
Hanninen, R. ;
Tsubota, M. .
PHYSICAL REVIEW E, 2006, 74 (04)
[8]   Is the Reynolds number infinite in superfluid turbulence? [J].
Barenghi, Carlo F. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) :2195-2202
[9]   Motion of vortex ring with tracer particles in superfluid helium [J].
Barenghi, Carlo F. ;
Sergeev, Yuri A. .
PHYSICAL REVIEW B, 2009, 80 (02)
[10]   Superfluid vortex lines in a model of turbulent flow [J].
Barenghi, CF ;
Samuels, DC ;
Bauer, GH ;
Donnelly, RJ .
PHYSICS OF FLUIDS, 1997, 9 (09) :2631-2643