Fourier Analysis for Type III Representations of the Noncommutative Torus

被引:3
作者
Fidaleo, Francesco [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Noncommutative harmonic analysis; Noncommutative geometry; Noncommutative torus; Type III representations; Noncommutative measure theory; Modular spectral triples; SPECTRAL TRIPLES; ALGEBRA;
D O I
10.1007/s00041-019-09683-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the noncommutative 2-torus, we define and study Fourier transforms arising from representations of states with central supports in the bidual, exhibiting a possibly nontrivial modular structure (i.e. type III representations). We then prove the associated noncommutative analogous of Riemann-LebesgueLemmaand Hausdorff-Young Theorem. In addition, the L-p-convergence result of the Cesaro means (i.e. the Fejer theorem), and the Abel means reproducing the Poisson kernel are also established, providing inversion formulae for the Fourier transforms in L-p spaces, p is an element of [1, 2]. Finally, in L-2(M) we show how such Fourier transforms "diagonalise" appropriately some particular cases of modular Dirac operators, the latter being part of a one-parameter family of modular spectral triples naturally associated to the previously mentioned non type II1 representations.
引用
收藏
页码:2801 / 2835
页数:35
相关论文
共 30 条
[1]  
[Anonymous], 2009, Introduction to Fourier Analysis and Wavelets
[2]  
[Anonymous], 2003, ENCYCL MATH SCI
[3]  
Bergh J., 1976, GRUNDLEHREN MATH WIS
[4]   THE STANDARD DUAL OF AN OPERATOR SPACE [J].
BLECHER, DP .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 153 (01) :15-30
[5]  
Boca F.P, 2001, Rotation C*-Algebras and Almost Mathieu Operators
[6]  
Bratteli O., 1887, OPERATOR ALGEBRAS QU
[7]  
Bratteli O, 1997, OPERATOR ALGEBRAS QU
[8]  
Carey AL, 2011, ESI LECT MATH PHYS, P175
[9]   Harmonic Analysis on Quantum Tori [J].
Chen, Zeqian ;
Xu, Quanhua ;
Yin, Zhi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (03) :755-805
[10]  
Connes A., 1994, NONCOMMUTATIVE GEOME