Holder continuity for stochastic fractional heat equation with colored noise

被引:6
作者
Li, Kexue [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Stochastic fractional heat equation; Fractional heat kernel; Colored noise; Holder continuity; PARTIAL-DIFFERENTIAL-EQUATIONS; KERNEL; LAPLACIAN;
D O I
10.1016/j.spl.2017.04.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider semilinear stochastic fractional heat equation partial derivative u(t)/partial derivative t = - (-Delta)(beta/2)u(t) + sigma(u(t))(eta) over dot. The Gaussian noise (eta) over dot is assumed to be colored in space with covariance of the form E((eta) over dot(t, x)(eta) over dot(s, y)) = delta(0)(t - s)f(alpha)(x - y), where f(alpha) is the Riesz kernel f(alpha)(x) alpha vertical bar x vertical bar(-alpha). We obtain the spatial and temporal Holder continuity of the mild solution. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 23 条
  • [1] INTERMITTENCY FOR THE WAVE AND HEAT EQUATIONS WITH FRACTIONAL NOISE IN TIME
    Balan, Raluca M.
    Conus, Daniel
    [J]. ANNALS OF PROBABILITY, 2016, 44 (02) : 1488 - 1534
  • [2] Stochastic Heat Equation with Multiplicative Fractional-Colored Noise
    Balan, Raluca M.
    Tudor, Ciprian A.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (03) : 834 - 870
  • [3] On weak convergence of stochastic heat equation with colored noise
    Bezdek, Pavel
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (09) : 2860 - 2875
  • [4] Estimates of heat kernel of fractional Laplacian perturbed by gradient operators
    Bogdan, Krzysztof
    Jakubowski, Tomasz
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) : 179 - 198
  • [5] Chen L., 2014, Stoch. Partial Differ. Equ. Anal. Comput., V2, P316, DOI [10.1007/s40072-014-0034-6, DOI 10.1007/S40072-014-0034-6]
  • [6] On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations
    Chen, Le
    Kim, Kunwoo
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01): : 358 - 388
  • [7] DIRICHLET HEAT KERNEL ESTIMATES FOR FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    [J]. ANNALS OF PROBABILITY, 2012, 40 (06) : 2483 - 2538
  • [8] Heat kernel estimates for stable-like processes on d-sets
    Chen, ZQ
    Kumagai, T
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) : 27 - 62
  • [9] On the chaotic character of the stochastic heat equation, II
    Conus, Daniel
    Joseph, Mathew
    Khoshnevisan, Davar
    Shiu, Shang-Yuan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 483 - 533
  • [10] Holder continuity for parabolic Anderson equation with non-Gaussian noise
    Cui, Jianbo
    Liu, Zhihui
    Miao, Lijun
    Wang, Xu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) : 684 - 691