All solid-state electrochromic devices with gelatin-based electrolyte

被引:74
|
作者
Avellaneda, Csar O. [1 ,2 ]
Vieira, Diogo F. [3 ]
Al-Kahlout, Amal [2 ]
Heusing, Sabine
Leite, Edson R. [1 ]
Pawlicka, Agnieszka [3 ]
Aegerter, Michel A. [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Quim, LIEC, CP 676, BR-13565905 Sao Carlos, SP, Brazil
[2] Leibniz Inst Neue Mat, D-66123 Saarbrucken, Germany
[3] Univ Sao Paulo, Inst Fis & Quim, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
solid electrolyte; gelatin; electrochromic devices; Nb2O5 : Mo; ion storage; thin films;
D O I
10.1016/j.solmat.2007.02.025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
6 x 8cm(2) electrochromic devices (ECDs) with the configuration K-glass/EC-layer/electrotype/ion-storage (IS) layer/K-glass, have been assembled using Nb2O5:Mo EC layers, a (CeO2)(0.81)-TiO2 IS-layer and a new gelatin electrolyte containing Li+ ions. The structure of the electrolyte is X-ray amorphous. Its ionic conductivity passed by a maximum of 1.5 x 10(-5) S/CM for a lithium concentration of 0.3g/15ml. The value increases with temperature and follows an Arrhenius law with an activation energy of 49.5 kJ/mol. All solid-state devices show a reversible gray coloration, a long-term stability of more than 25,000 switching cycles (+/- 2.0 V/90 s), a transmission change at 550 nm between 60% (bleached state) and 40% (colored state) corresponding to a change of the optical density (Delta OD = 0. 15) with a coloration efficiency increasing from 10cm(2)/C (initial cycle) to 23cm(2)/C (25,000th cycle). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 233
页数:6
相关论文
共 50 条
  • [21] High performance printed organic electrochromic devices based on an optimized UV curable solid-state electrolyte
    Huang, Chenchao
    Hu, Zishou
    Yi, Yuan-Qiu-Qiang
    Chen, Xiaolian
    Wu, Xinzhou
    Su, Wenming
    Cui, Zheng
    NANOSCALE, 2022, 14 (38) : 14122 - 14128
  • [22] Solution Casting Effect of PMMA-Based Polymer Electrolyte on the Performances of Solid-State Electrochromic Devices
    Abdelhamed, Abdelrahman Hamed Ebrahem
    Thien, Gregory Soon How
    Lee, Chu-Liang
    Au, Benedict Wen-Cheun
    Tan, Kar Ban
    Murthy, H. C. Ananda
    Chan, Kah-Yoong
    POLYMERS, 2025, 17 (01)
  • [23] All polymeric solid state electrochromic devices
    De Paoli, MA
    Casalbore-Miceli, G
    Girotto, EM
    Gazotti, WA
    ELECTROCHIMICA ACTA, 1999, 44 (18) : 2983 - 2991
  • [24] INORGANIC OXIDE SOLID-STATE ELECTROCHROMIC DEVICES
    CANTAO, MP
    LOURENCO, A
    GORENSTEIN, A
    DETORRESI, SIC
    TORRESI, RM
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1994, 26 (2-3): : 157 - 161
  • [25] Optimization study in solid-state electrochromic devices
    Ye, YH
    Tan, XL
    Liang, ZC
    CURRENT DEVELOPMENTS IN OPTICAL ELEMENTS AND MANUFACTURING, 1998, 3557 : 85 - 91
  • [26] ELECTROCHROMIC MIRRORS AS SOLID-STATE IONIC DEVICES
    KLEPERIS, J
    RODIONOV, AN
    LUSIS, A
    SOVIET ELECTROCHEMISTRY, 1992, 28 (10): : 1186 - 1190
  • [27] An all solid-state electrochromic smart window
    SU Lianyong
    ChineseScienceBulletin, 1998, (11) : 944 - 947
  • [28] An all solid-state electrochromic smart window
    Su, LY
    Lu, ZH
    Wei, Y
    CHINESE SCIENCE BULLETIN, 1998, 43 (11): : 944 - 947
  • [29] Preparation of Solid-state Multicolor Electrochromic Devices Based on Conducting Polymers
    Chen Li-Xian
    Weng Shao-Huang
    Zhou Jian-Zhang
    Lin Zhong-Hua
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2010, 31 (04): : 790 - 795
  • [30] Solid-state electrochromic devices based on poly (phenylene vinylene) polymers
    Holt, AL
    Leger, JM
    Carter, SA
    APPLIED PHYSICS LETTERS, 2005, 86 (12) : 1 - 3