A Benchmark for Sparse Coding: When Group Sparsity Meets Rank Minimization

被引:99
作者
Zha, Zhiyuan [1 ]
Yuan, Xin [2 ]
Wen, Bihan [3 ]
Zhou, Jiantao [4 ]
Zhang, Jiachao [5 ]
Zhu, Ce [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Nokia Bell Labs, Murray Hill, NJ 07974 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[4] Univ Macau, Dept Comp & Informat Sci, Taipa 999078, Macao, Peoples R China
[5] Nanjing Inst Technol, Kangni Mech & Elect Inst, Nanjing 211167, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse coding; GSC; rank minimization; adaptive dictionary; weighted l(p)-norm minimization; image restoration; compressive sensing; nuclear norm; IMAGE-RESTORATION; MATRIX COMPLETION; K-SVD; REPRESENTATION; ALGORITHM; NORM; COMPRESSION; DICTIONARY; TRANSFORM; RECOVERY;
D O I
10.1109/TIP.2020.2972109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding has achieved a great success in various image processing tasks. However, a benchmark to measure the sparsity of image patch/group is missing since sparse coding is essentially an NP-hard problem. This work attempts to fill the gap from the perspective of rank minimization. We firstly design an adaptive dictionary to bridge the gap between group-based sparse coding (GSC) and rank minimization. Then, we show that under the designed dictionary, GSC and the rank minimization problems are equivalent, and therefore the sparse coefficients of each patch group can be measured by estimating the singular values of each patch group. We thus earn a benchmark to measure the sparsity of each patch group because the singular values of the original image patch groups can be easily computed by the singular value decomposition (SVD). This benchmark can be used to evaluate performance of any kind of norm minimization methods in sparse coding through analyzing their corresponding rank minimization counterparts. Towards this end, we exploit four well-known rank minimization methods to study the sparsity of each patch group and the weighted Schatten $p$ -norm minimization (WSNM) is found to be the closest one to the real singular values of each patch group. Inspired by the aforementioned equivalence regime of rank minimization and GSC, WSNM can be translated into a non-convex weighted -norm minimization problem in GSC. By using the earned benchmark in sparse coding, the weighted -norm minimization is expected to obtain better performance than the three other norm minimization methods, i.e., -norm, -norm and weighted -norm. To verify the feasibility of the proposed benchmark, we compare the weighted -norm minimization against the three aforementioned norm minimization methods in sparse coding. Experimental results on image restoration applications, namely image inpainting and image compressive sensing recovery, demonstrate that the proposed scheme is feasible and outperforms many state-of-the-art methods.
引用
收藏
页码:5094 / 5109
页数:16
相关论文
共 72 条
[1]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[2]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[3]  
[Anonymous], 2009, Advances in Neural Information Processing Systems
[4]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[5]  
Boyd S., 2011, DISTRIBUTED OPTIMIZA, DOI DOI 10.1561/2200000016
[6]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[7]   Exact Matrix Completion via Convex Optimization [J].
Candes, Emmanuel J. ;
Recht, Benjamin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) :717-772
[8]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[9]   Adaptive wavelet thresholding for image denoising and compression [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1532-1546
[10]   Hyper-Laplacian Regularized Unidirectional Low-rank Tensor Recovery for Multispectral Image Denoising [J].
Chang, Yi ;
Yan, Luxin ;
Zhong, Sheng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5901-5909