The effect of bond coat grit blasting on the durability and thermally grown oxide stress in an electron beam physical vapor deposited thermal barrier coating

被引:54
作者
Xie, LD
Sohn, YH
Jordan, EH
Gell, M [1 ]
机构
[1] Univ Connecticut, Inst Mat Sci, Sch Engn, Dept Met & Mat Engn, Storrs, CT 06269 USA
[2] Univ Cent Florida, Mech Mat & Aerosp Engn Dept, Adv Mat Proc & Anal Ctr, Orlando, FL 32826 USA
[3] Univ Connecticut, Dept Mech Engn, Sch Engn, Storrs, CT 06269 USA
关键词
thermal barrier coatings; photo-stimulated luminescence; residual stress; non-destructive inspection;
D O I
10.1016/S0257-8972(03)00466-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photo-stimulated luminescence Piezo-spectroscopy (PLPS) is being developed as a non-destructive technique for thermal barrier coatings (TBC). In this study, the evolution of photo-stimulated luminescence with thermal cycling was systematically investigated from the thermally grown oxide (TGO) in a production TBC, which consists of an electron beam physical vapor deposited (EB-PVD) 7 wt.% Y2O3-ZrO2 top coat, a grit blasted (Ni,Pt)Al bond coat and a CMSX-4 superalloy substrate. The change of compressive stress in the TGO layer on the bond coat with thermal cycling was calculated from the wavelength shift of the luminescence spectra. The compressive stress increased from 1.0-2.2 GPa in the as received state to 2.8-3.3 GPa at 10 cycles, then gradually decreased to 1.2-1.9 GPa until 500 cycles and remained at this level until TBC spallation. Other fluorescence spectra characteristics, such as the width of R1 and R2 peaks and their relative intensity, were also evaluated. These PLPS measurements on TBCs with grit blasted bond coats are compared with previous measurements on similar TBC system but with non-grit blasted bond coats. It is concluded that the initial increase in stress is associated with the formation of a continuous oxide layer. The lower stress of the specimens with the grit blasted bond coats compared to that of the as-coated bond coats is associated partly with the greater surface roughness. And the fast decline in compressive stress is the result of bond coat surface rumpling facilitated by the initially rougher surface. The lifetime of the TBCs with grit blasted bond coats varies over a narrow range, 600-750 cycles with an average of 675 cycles, which is related to their consistent bond coat surface roughness. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 29 条
  • [21] Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings: II. Evolution of photo-stimulated luminescence
    Sohn, YH
    Vaidyanathan, K
    Ronski, M
    Jordan, EH
    Gell, M
    [J]. SURFACE & COATINGS TECHNOLOGY, 2001, 146 : 102 - 109
  • [22] Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings: 1. Microstructural development and spallation mechanisms
    Sohn, YH
    Kim, JH
    Jordan, EH
    Gell, M
    [J]. SURFACE & COATINGS TECHNOLOGY, 2001, 146 : 70 - 78
  • [23] Microstructural study of the theta-alpha transformation in alumina scales formed on nickel-aluminides
    Tolpygo, VK
    Clarke, DR
    [J]. MATERIALS AT HIGH TEMPERATURES, 2000, 17 (01) : 59 - 70
  • [24] Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation
    Tolpygo, VK
    Clarke, DR
    [J]. ACTA MATERIALIA, 2000, 48 (13) : 3283 - 3293
  • [25] Mechanisms of spallation of electron beam physical vapor deposited thermal barrier coatings with and without platinum aluminide bond coat ridges
    Vaidyanathan, K
    Gell, M
    Jordan, E
    [J]. SURFACE & COATINGS TECHNOLOGY, 2000, 133 : 28 - 34
  • [26] VAIDYANATHAN K, 2000, THESIS U CONNECTICUT
  • [27] THERMAL BARRIER COATINGS FOR GAS-TURBINE USE
    WORTMAN, DJ
    NAGARAJ, BA
    DUDERSTADT, EC
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 120 : 433 - 440
  • [28] Edge effects in thin film delamination
    Yu, HH
    He, MY
    Hutchinson, JW
    [J]. ACTA MATERIALIA, 2001, 49 (01) : 93 - 107
  • [29] Thermal-barrier coatings for advanced gas-turbine engines
    Zhu, DM
    Miller, RA
    [J]. MRS BULLETIN, 2000, 25 (07) : 43 - 47