A support tool for planning classrooms considering social distancing between students

被引:7
作者
Bortolete, J. C. [1 ]
Bueno, L. F. [2 ]
Butkeraites, R. [2 ]
Chaves, A. A. [2 ]
Collaco, G. [2 ]
Magueta, M. [2 ]
Pelogia, F. J. R. [2 ]
Salles Neto, L. L. [2 ]
Santos, T. S. [2 ,3 ]
Silva, T. S. [2 ]
Sobral, F. N. C. [4 ]
Yanasse, H. H. [2 ]
机构
[1] Fed Inst Sao Paulo, Dept Math, Itaquaquecetuba, SP, Brazil
[2] Univ Fed Sao Paulo, Dept Sci & Technol, Sao Jose Dos Campos, SP, Brazil
[3] Fed Inst Sao Paulo, Dept Math, Campos Do Jordao, SP, Brazil
[4] Univ Estadual Maringa, Dept Math, Maringa, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
Location problems; Maximal coverage; Overlap control; Mathematical model; Metaheuristic; COVID-19; PACKING; CYLINDERS; CIRCLE;
D O I
10.1007/s40314-021-01718-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the online tool http://salaplanejada.unifesp.br, developed to assist the layout planning of classrooms considering the social distancing in the context of the COVID-19 pandemic. We address both the fixed and non-fixed position seat allocation problems. For the first case, we use two integer optimization models and discuss some curiosities about the solutions found. For the case that the seats can be moved freely, we handle the problem with circle packing techniques using continuous non-linear optimization. For these instances, we propose new algorithms, following other packing problems approaches in the literature. In addition, we propose a fast heuristic that provides a good starting point for the optimization procedure and also an efficient configuration ensuring the students positions in lines, which may be of interest to the user. Computational results are presented to illustrate the numerical behavior of the algorithms and models.
引用
收藏
页数:23
相关论文
共 42 条
[1]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[2]  
[Anonymous], 1979, Computers and intractability
[3]   Minimizing the object dimensions in circle and sphere packing problems [J].
Birgin, E. G. ;
Sobral, F. N. C. .
COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (07) :2357-2375
[4]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[5]   A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids [J].
Birgin, E. G. ;
Lobato, R. D. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 272 (02) :447-464
[6]   Optimality properties of an Augmented Lagrangian method on infeasible problems [J].
Birgin, E. G. ;
Martinez, J. M. ;
Prudente, L. F. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (03) :609-631
[7]   Optimizing the packing of cylinders into a rectangular container:: A nonlinear approach [J].
Birgin, EG ;
Martínez, JM ;
Ronconi, DP .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 160 (01) :19-33
[8]   Large-scale active-set box-constrained optimization method with spectral projected gradients [J].
Birgin, EG ;
Martínez, JM .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (01) :101-125
[9]   Packing circles within ellipses [J].
Birgin, Ernesto G. ;
Bustamante, Luis Henrique ;
Callisaya, Hector Flores ;
Martinez, Jose Mario .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2013, 20 (03) :365-389
[10]   Orthogonal packing of identical rectangles within isotropic convex regions [J].
Birgin, Ernesto G. ;
Lobato, Rafael D. .
COMPUTERS & INDUSTRIAL ENGINEERING, 2010, 59 (04) :595-602